Proix Timothée, Bartolomei Fabrice, Guye Maxime, Jirsa Viktor K
Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.
Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service de Neurophysiologie Clinique, CHU, 13005 Marseille, France.
Brain. 2017 Mar 1;140(3):641-654. doi: 10.1093/brain/awx004.
See Lytton (doi:10.1093/awx018) for a scientific commentary on this article.Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroencephalography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions.
有关本文的科学评论,请参阅利顿(doi:10.1093/awx018)。神经网络振荡是认知、感知和意识的基本机制。因此,网络活动的扰动在脑部疾病的病理生理学中起着重要作用。当将来自非侵入性脑成像的结构信息与数学建模相结合时,生成性脑网络模型就构成了用于探索脑功能因果机制和临床假设检验的个性化计算机模拟平台。我们在此以耐药性癫痫为例进行说明,从扩散磁共振成像得出的患者特异性虚拟脑模型具有足够的预测能力,可改善诊断和手术结果。在部分性癫痫中,癫痫发作在招募其他近处或远处脑区之前,起源于一个局部网络,即所谓的致痫区。我们为15名患者创建了个性化的大规模脑网络,并模拟了个体癫痫发作的传播模式。根据术前立体定向脑电图数据和标准临床评估进行模型验证。我们证明,个体脑模型能够解释患者癫痫发作的传播模式,可以解释术后成功率的差异,但在使用患者特异性连接性时并不能可靠地增强。我们的结果表明,基于连接组的脑网络模型有能力解释在某些脑部疾病中观察到的脑活动组织变化,从而为发现新的临床干预措施开辟了道路。