Suppr超能文献

贝叶斯非参数纵向数据分析

Bayesian Nonparametric Longitudinal Data Analysis.

作者信息

Quintana Fernando A, Johnson Wesley O, Waetjen Elaine, Gold Ellen

机构信息

Pontificia Universidad Católica de Chile, Santiago, Chile.

University of California Irvine, USA.

出版信息

J Am Stat Assoc. 2016;111(515):1168-1181. doi: 10.1080/01621459.2015.1076725. Epub 2016 Oct 18.

Abstract

Practical Bayesian nonparametric methods have been developed across a wide variety of contexts. Here, we develop a novel statistical model that generalizes standard mixed models for longitudinal data that include flexible mean functions as well as combined compound symmetry (CS) and autoregressive (AR) covariance structures. AR structure is often specified through the use of a Gaussian process (GP) with covariance functions that allow longitudinal data to be more correlated if they are observed closer in time than if they are observed farther apart. We allow for AR structure by considering a broader class of models that incorporates a Dirichlet Process Mixture (DPM) over the covariance parameters of the GP. We are able to take advantage of modern Bayesian statistical methods in making full predictive inferences and about characteristics of longitudinal profiles and their differences across covariate combinations. We also take advantage of the generality of our model, which provides for estimation of a variety of covariance structures. We observe that models that fail to incorporate CS or AR structure can result in very poor estimation of a covariance or correlation matrix. In our illustration using hormone data observed on women through the menopausal transition, biology dictates the use of a generalized family of sigmoid functions as a model for time trends across subpopulation categories.

摘要

实用的贝叶斯非参数方法已在广泛的背景下得到发展。在此,我们开发了一种新颖的统计模型,该模型推广了用于纵向数据的标准混合模型,这些模型包括灵活的均值函数以及组合的复合对称(CS)和自回归(AR)协方差结构。AR结构通常通过使用高斯过程(GP)来指定,其协方差函数使得如果纵向数据在时间上观察得更近,则比观察得更远时具有更强的相关性。我们通过考虑一类更广泛的模型来允许AR结构,该模型在GP的协方差参数上纳入了狄利克雷过程混合(DPM)。我们能够利用现代贝叶斯统计方法进行完整的预测推断,并推断纵向轮廓的特征及其在协变量组合之间的差异。我们还利用了我们模型的通用性,它提供了对各种协方差结构的估计。我们观察到,未能纳入CS或AR结构的模型可能会导致协方差或相关矩阵的估计非常差。在我们使用通过绝经过渡观察到的女性激素数据的示例中,生物学决定使用广义的Sigmoid函数族作为亚人群类别中时间趋势的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b983/5373670/e1e125ac33d6/nihms852519f1.jpg

相似文献

1
Bayesian Nonparametric Longitudinal Data Analysis.贝叶斯非参数纵向数据分析
J Am Stat Assoc. 2016;111(515):1168-1181. doi: 10.1080/01621459.2015.1076725. Epub 2016 Oct 18.
10
ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.线性模型协方差矩阵的ARMA乔列斯基因子模型
Comput Stat Data Anal. 2017 Nov;115:267-280. doi: 10.1016/j.csda.2017.05.001. Epub 2017 May 18.

本文引用的文献

4
Bayesian inference in semiparametric mixed models for longitudinal data.纵向数据半参数混合模型中的贝叶斯推断。
Biometrics. 2010 Mar;66(1):70-8. doi: 10.1111/j.1541-0420.2009.01227.x. Epub 2009 May 7.
5
Bayesian nonparametric nonproportional hazards survival modeling.贝叶斯非参数非比例风险生存建模
Biometrics. 2009 Sep;65(3):762-71. doi: 10.1111/j.1541-0420.2008.01166.x. Epub 2009 Feb 4.
8
Shrinkage estimators for covariance matrices.协方差矩阵的收缩估计量。
Biometrics. 2001 Dec;57(4):1173-84. doi: 10.1111/j.0006-341x.2001.01173.x.
10
A five-parameter logistic equation for investigating asymmetry of curvature in baroreflex studies.
Am J Physiol. 1999 Aug;277(2):R441-54. doi: 10.1152/ajpregu.1999.277.2.R441.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验