Suppr超能文献

美国 18 至 50 岁人群吸烟模式的不连续性:一项重复测量潜在类别分析。

Discontinuous Patterns of Cigarette Smoking From Ages 18 to 50 in the United States: A Repeated-Measures Latent Class Analysis.

机构信息

Institute for Social Research, University of Michigan, Ann Arbor, MI.

出版信息

Nicotine Tob Res. 2017 Dec 13;20(1):108-116. doi: 10.1093/ntr/ntx074.

Abstract

INTRODUCTION

Effective cigarette smoking prevention and intervention programming is enhanced by accurate understanding of developmental smoking pathways across the life span. This study investigated within-person patterns of cigarette smoking from ages 18 to 50 among a US national sample of high school graduates, focusing on identifying ages of particular importance for smoking involvement change.

AIMS AND METHODS

Using data from approximately 15,000 individuals participating in the longitudinal Monitoring the Future study, trichotomous measures of past 30-day smoking obtained at 11 time points were modeled using repeated-measures latent class analyses. Sex differences in latent class structure and membership were examined.

RESULTS

Twelve latent classes were identified: three characterized by consistent smoking patterns across age (no smoking; smoking < pack per day; smoking pack + per day); three showing uptake to a higher category of smoking across age; four reflecting successful quit behavior by age 50; and two defined by discontinuous shifts between smoking categories. The same latent class structure was found for both males and females, but membership probabilities differed between sexes. Although evidence of increases or decreases in smoking behavior was observed at virtually all ages through 35, 21/22 and 29/30 appeared to be particularly key for smoking category change within class.

CONCLUSIONS

This examination of latent classes of cigarette smoking among a national US longitudinal sample of high school graduates from ages 18 to 50 identified unique patterns and critical ages of susceptibility to change in smoking category within class. Such information may be of particular use in developing effective smoking prevention and intervention programming.

IMPLICATIONS

This study examined cigarette smoking among a national longitudinal US sample of high school graduates from ages 18 to 50 and identified distinct latent classes characterized by patterns of movement between no cigarette use, light-to-moderate smoking, and the conventional definition of heavy smoking at 11 time points via repeated-measures latent class analysis. Membership probabilities for each smoking class were estimated, and critical ages of susceptibility to change in smoking behaviors were identified.

摘要

简介

通过准确理解整个生命周期内吸烟的发展途径,可以增强有效的吸烟预防和干预计划。本研究调查了美国高中毕业生全国样本中从 18 岁到 50 岁的个体内吸烟模式,重点确定了与吸烟参与变化特别相关的年龄。

目的和方法

使用大约 15000 名参与纵向监测未来研究的个体的数据,使用重复测量潜在类别分析对 11 个时间点获得的过去 30 天吸烟的三分制测量进行建模。研究了性别对潜在类别结构和成员身份的影响。

结果

确定了 12 个潜在类别:三个类别的吸烟模式在整个年龄范围内保持一致(不吸烟;吸烟<每天 1 包;吸烟每天 1 包+);三个类别显示随着年龄的增长,吸烟的种类上升到更高的水平;四个类别反映了到 50 岁时成功戒烟的行为;两个类别的吸烟种类出现不连续的变化。男性和女性都发现了相同的潜在类别结构,但性别之间的成员概率不同。尽管几乎在所有年龄段都观察到吸烟行为的增加或减少,但在 21/22 和 29/30 岁时,似乎特别关键,因为这是在类别内改变吸烟类别。

结论

本研究对美国全国高中毕业生纵向样本中从 18 岁到 50 岁的个体的香烟吸烟情况进行了潜在类别分析,确定了独特的模式和关键的易变年龄,以改变类内吸烟类别。这些信息可能对制定有效的吸烟预防和干预计划特别有用。

意义

本研究调查了美国全国性的高中毕业生纵向样本中从 18 岁到 50 岁的个体的香烟吸烟情况,并通过重复测量潜在类别分析,在 11 个时间点识别了不同的潜在类别,这些类别以从不吸烟、轻度至中度吸烟和传统意义上的重度吸烟之间的移动模式为特征。估计了每个吸烟类别的成员概率,并确定了吸烟行为易变的关键年龄。

相似文献

2
Progression to established patterns of cigarette smoking among young adults.
Drug Alcohol Depend. 2017 Aug 1;177:77-83. doi: 10.1016/j.drugalcdep.2017.03.040. Epub 2017 May 29.
3
Are E-cigarette Users a Unique Group of Smokers? Latent Class Analysis of the National Youth Tobacco Survey.
J Drug Educ. 2020 Sep-Dec;49(3-4):87-114. doi: 10.1177/0047237920980483. Epub 2020 Dec 13.
4
Repeated measures latent class analysis of daily smoking in three smoking cessation studies.
Drug Alcohol Depend. 2016 Aug 1;165:132-42. doi: 10.1016/j.drugalcdep.2016.05.025. Epub 2016 Jun 6.
7
Paths to tobacco abstinence: A repeated-measures latent class analysis.
J Consult Clin Psychol. 2015 Aug;83(4):696-708. doi: 10.1037/ccp0000017. Epub 2015 Apr 13.
10
A latent class analysis of heavy substance use in Young adulthood and impacts on physical, cognitive, and mental health outcomes in middle age.
Drug Alcohol Depend. 2020 Jul 1;212:108018. doi: 10.1016/j.drugalcdep.2020.108018. Epub 2020 Apr 27.

引用本文的文献

1
Feasibility of mailed biomarker data collection among U.S. young adults: Saliva-based cotinine and self-reported nicotine use.
Drug Alcohol Depend. 2023 Mar 1;244:109791. doi: 10.1016/j.drugalcdep.2023.109791. Epub 2023 Feb 1.
2
Daily fluctuations in drinking intensity: Links with vaping and combustible use of nicotine and marijuana.
Drug Alcohol Depend. 2022 Apr 1;233:109347. doi: 10.1016/j.drugalcdep.2022.109347. Epub 2022 Feb 12.
4
A 5-Factor Framework for Assessing Tobacco Use Disorder.
Tob Use Insights. 2021 Feb 26;14:1179173X21998355. doi: 10.1177/1179173X21998355. eCollection 2021.
5
Tobacco Taxation and Its Prospective Impact on Disparities in Smoking Initiation and Progression Among Young Adults.
J Adolesc Health. 2021 Apr;68(4):765-772. doi: 10.1016/j.jadohealth.2020.08.031. Epub 2020 Oct 8.

本文引用的文献

1
Current cigarette smoking among adults - United States, 2005-2014.
MMWR Morb Mortal Wkly Rep. 2015 Nov 13;64(44):1233-40. doi: 10.15585/mmwr.mm6444a2.
2
Does reduced smoking if you can't stop make any difference?
BMC Med. 2015 Oct 12;13:257. doi: 10.1186/s12916-015-0505-2.
3
Longitudinal Smoking Patterns: Do They Predict Symptoms of ADHD in Adults?
J Atten Disord. 2020 Jan;24(1):86-93. doi: 10.1177/1087054715584057. Epub 2015 May 4.
4
Paths to tobacco abstinence: A repeated-measures latent class analysis.
J Consult Clin Psychol. 2015 Aug;83(4):696-708. doi: 10.1037/ccp0000017. Epub 2015 Apr 13.
6
Eliminating Bias in Classify-Analyze Approaches for Latent Class Analysis.
Struct Equ Modeling. 2015 Jan;22(1):1-11. doi: 10.1080/10705511.2014.935265.
8
Trajectories of cigarette smoking from adolescence to adulthood as predictors of unemployment status.
Nicotine Tob Res. 2014 Dec;16(12):1559-66. doi: 10.1093/ntr/ntu107. Epub 2014 Jul 5.
9
Individual- and community-level correlates of cigarette-smoking trajectories from age 13 to 32 in a U.S. population-based sample.
Drug Alcohol Depend. 2013 Sep 1;132(1-2):301-8. doi: 10.1016/j.drugalcdep.2013.02.021. Epub 2013 Mar 15.
10
Trajectories of cigarette smoking in adulthood predict insomnia among women in late mid-life.
Sleep Med. 2012 Oct;13(9):1130-7. doi: 10.1016/j.sleep.2012.05.008. Epub 2012 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验