Suppr超能文献

并行操作的高通量原子力显微镜。

High-throughput atomic force microscopes operating in parallel.

作者信息

Sadeghian Hamed, Herfst Rodolf, Dekker Bert, Winters Jasper, Bijnagte Tom, Rijnbeek Ramon

机构信息

Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft, The Netherlands.

出版信息

Rev Sci Instrum. 2017 Mar;88(3):033703. doi: 10.1063/1.4978285.

Abstract

Atomic force microscopy (AFM) is an essential nanoinstrument technique for several applications such as cell biology and nanoelectronics metrology and inspection. The need for statistically significant sample sizes means that data collection can be an extremely lengthy process in AFM. The use of a single AFM instrument is known for its very low speed and not being suitable for scanning large areas, resulting in a very-low-throughput measurement. We address this challenge by parallelizing AFM instruments. The parallelization is achieved by miniaturizing the AFM instrument and operating many of them simultaneously. This instrument has the advantages that each miniaturized AFM can be operated independently and that the advances in the field of AFM, both in terms of speed and imaging modalities, can be implemented more easily. Moreover, a parallel AFM instrument also allows one to measure several physical parameters simultaneously; while one instrument measures nano-scale topography, another instrument can measure mechanical, electrical, or thermal properties, making it a lab-on-an-instrument. In this paper, a proof of principle of such a parallel AFM instrument has been demonstrated by analyzing the topography of large samples such as semiconductor wafers. This nanoinstrument provides new research opportunities in the nanometrology of wafers and nanolithography masks by enabling real die-to-die and wafer-level measurements and in cell biology by measuring the nano-scale properties of a large number of cells.

摘要

原子力显微镜(AFM)是一种重要的纳米仪器技术,可用于多种应用,如细胞生物学以及纳米电子计量与检测。由于需要具有统计学意义的样本量,这意味着在原子力显微镜中数据收集可能是一个极其漫长的过程。使用单一的原子力显微镜仪器,其速度非常低且不适用于大面积扫描,导致测量通量极低。我们通过将原子力显微镜仪器并行化来应对这一挑战。并行化是通过将原子力显微镜仪器小型化并同时操作多个仪器来实现的。这种仪器具有以下优点:每个小型化的原子力显微镜都可以独立操作,并且原子力显微镜领域在速度和成像方式方面的进展能够更轻松地得以实现。此外,并行原子力显微镜仪器还允许同时测量多个物理参数;当一个仪器测量纳米级形貌时,另一个仪器可以测量机械、电学或热学性质,使其成为一种集成式实验室仪器。在本文中,通过分析诸如半导体晶圆等大尺寸样本的形貌,已证明了这种并行原子力显微镜仪器的原理验证。这种纳米仪器通过实现真正的芯片到芯片和晶圆级测量,为晶圆纳米计量和纳米光刻掩膜提供了新的研究机会,并且通过测量大量细胞的纳米级性质,在细胞生物学领域也提供了新的研究机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验