Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, "Acad. G. Bontchev" Str. 21, 1113 Sofia, Bulgaria.
Faculty of Life Sciences, Reutlingen University, Alteburgstraße 150, D-72762 Reutlingen, Germany.
Int J Mol Sci. 2023 Sep 19;24(18):14296. doi: 10.3390/ijms241814296.
Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.
神经退行性疾病(NDDs)是一种复杂的、多因素的疾病,在当今社会具有重大的社会和经济影响。由于预期寿命的延长,以及缺乏早期诊断和主要的对症治疗,NDDs 预计将在未来几十年成为第二大常见死因。尽管在诊断和治疗方法方面取得了最近的进展,但仍没有可靠的生物标志物来确定导致这些疾病的复杂途径。开发新的早期诊断方法和新的治疗方法,以及确定非侵入性和更具成本效益的诊断生物标志物,是 NDD 生物医学研究的主要趋势之一。在这里,我们总结了迄今为止报道的三种最常见的 NDD(阿尔茨海默病(AD)、帕金森病(PD)和肌萎缩侧索硬化症(ALS))外周生物标志物、生物流体(脑脊液和血浆)和外周血细胞(血小板(PLTs)和红细胞(RBCs))的数据。除了其主要的生理功能外,PLTs 和 RBCs 越来越被认为是 NDD 生物标志物的有价值来源。特别关注 PLTs 和 RBCs 的形态和纳米力学特征,作为这三种疾病的生物物理标志物。通过原子力显微镜(AFM)揭示了 AD、PD 和 ALS 患者的 PLTs 和 RBCs 的表面纳米结构和形态计量及纳米力学特征的改变。AFM 目前在生物医学和临床医学中正在经历快速和广泛的采用,特别是在各种医疗条件的早期诊断中。AFM 是一种独特的仪器,没有模拟,允许以极高的空间分辨率生成三维细胞图像,接近原子尺度,并补充了对细胞和亚细胞结构的机械性能的深入了解。数据表明,AFM 可以区分三种疾病和正常的健康状态。特定的 PLT 和 RBC 特征可以与目前使用的诊断工具结合作为生物标志物。我们强调了 PD、ALS 和 AD 中 RBCs 和 PLTs 之间形态和纳米力学特征的强相关性。