Goehring Lucas, Li Joaquim, Kiatkirakajorn Pree-Cha
School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany.
Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093). doi: 10.1098/rsta.2016.0161.
Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarize the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients in a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle X-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities-shear-banding and fracture-can be controlled.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'
带电胶体分散体构成了从涂料到涂层以及化妆品添加剂等广泛工业和商业产品的基础。在干燥过程中,这种颗粒最初的液体分散体逐渐浓缩成固体,由于内部压力变化很大,会表现出一系列机械不稳定性。在这里,我们通过将颗粒运动的平流扩散模型与颗粒间相互作用的泊松 - 玻尔兹曼单元模型相结合,总结了目前对该过程的理解,以预测干燥胶体薄膜中的浓度梯度。然后,我们通过对胶体二氧化硅的渗透压压缩实验以及对在Hele - Shaw池中干燥的二氧化硅分散体的小角X射线散射实验来检验这些预测。最后,我们利用这些分散体中微观物理的细节来探索如何控制两种宏观机械不稳定性——剪切带和断裂。本文是主题为“通过复杂介质中的不稳定性进行图案化:理论与应用”特刊的一部分。