Walloon Excellence in Lifesciences and Biotechnology, B-1200 Brussels, Belgium;
de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):E3233-E3242. doi: 10.1073/pnas.1613736114. Epub 2017 Apr 3.
The mammalian gene (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that -KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of -KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable "repair enzyme" to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in and other glutathione-producing bacteria.
哺乳动物基因 (腈水解酶样蛋白 1) 编码一种在真核生物中高度保守的蛋白质,被认为是一种肿瘤抑制因子。尽管与 ω-酰胺酶 (Nit2) 的序列同源性约为 35%,但 Nit1 蛋白不能有效地水解 α-酮戊二酸 (Nit2 的已知生理底物),其实际酶功能至今仍是一个谜。在本研究中,我们证明哺乳动物的 Nit1 及其酵母同源物都是高度活跃的酰胺酶,可作用于去氨谷胱甘肽 (dGSH;即谷胱甘肽中的自由氨基被羰基取代的形式)。我们进一步表明,人和酵母细胞的 -KO 突变体积累 dGSH,并且相同的化合物大量排泄在 -KO 小鼠的尿液中。最后,我们表明几种哺乳动物氨基转移酶 (转氨酶),包括细胞质和线粒体的转氨酶,可以通过一个共同的 (如果缓慢) 副反应形成 dGSH,并提供间接证据表明转氨酶主要负责培养的哺乳动物细胞中 dGSH 的形成。总的来说,这些发现描绘了一种典型的代谢物修复实例,即一些丰富的初级代谢酶的混杂活性导致形成一种无用且潜在有害的化合物,需要合适的 "修复酶" 将其破坏或重新转化为有用的代谢物。对 dGSH 修复反应的需求似乎不仅限于真核生物:我们证明,作为优秀 dGSH 酰胺酶的 Nit1 同源物也存在于 和其他产生谷胱甘肽的细菌中。