Vaughn Alexandra C, Cooper Erin M, DiLorenzo Patricia M, O'Loughlin Levi J, Konkel Michael E, Peters James H, Hajnal Andras, Sen Tanusree, Lee Sun Hye, de La Serre Claire B, Czaja Krzysztof
Washington State University, Integrative Physiology and Neuroscience, Pullman, WA, USA.
Binghamton University, Psychology, Binghamton, NY, USA.
Acta Neurobiol Exp (Wars). 2017;77(1):18-30. doi: 10.21307/ane-2017-033.
Obesity is associated with consumption of energy-dense diets and development of systemic inflammation. Gut microbiota play a role in energy harvest and inflammation and can influence the change from lean to obese phenotypes. The nucleus of the solitary tract (NTS) is a brain target for gastrointestinal signals modulating satiety and alterations in gut-brain vagal pathway may promote overeating and obesity. Therefore, we tested the hypothesis that high-fat diet‑induced changes in gut microbiota alter vagal gut-brain communication associated with increased body fat accumulation. Sprague-Dawley rats consumed a low energy‑dense rodent diet (LFD; 3.1 kcal/g) or high energy‑dense diet (HFD, 5.24 kcal/g). Minocycline was used to manipulate gut microbiota composition. 16S Sequencing was used to determine microbiota composition. Immunofluorescence against IB4 and Iba1 was used to determine NTS reorganization and microglia activation. Nodose ganglia from LFD rats were isolated and co-cultured with different bacteria strains to determine neurotoxicity. HFD altered gut microbiota with increases in Firmicutes/Bacteriodetes ratio and in pro-inflammatory Proteobacteria proliferation. HFD triggered reorganization of vagal afferents and microglia activation in the NTS, associated with weight gain. Minocycline-treated HFD rats exhibited microbiota profile comparable to LFD animals. Minocycline suppressed HFD‑induced reorganization of vagal afferents and microglia activation in the NTS, and reduced body fat accumulation. Proteobacteria isolated from cecum of HFD rats were toxic to vagal afferent neurons in culture. Our findings show that diet‑induced shift in gut microbiome may disrupt vagal gut‑brain communication resulting in microglia activation and increased body fat accumulation.
肥胖与高能量密度饮食的摄入以及全身炎症的发展有关。肠道微生物群在能量获取和炎症中发挥作用,并可影响从瘦型到肥胖型表型的转变。孤束核(NTS)是调节饱腹感的胃肠道信号的脑靶点,肠道-脑迷走神经通路的改变可能促进暴饮暴食和肥胖。因此,我们检验了以下假设:高脂饮食引起的肠道微生物群变化会改变与体脂积累增加相关的迷走神经肠道-脑通讯。Sprague-Dawley大鼠食用低能量密度的啮齿动物饮食(LFD;3.1千卡/克)或高能量密度饮食(HFD,5.24千卡/克)。米诺环素用于操控肠道微生物群组成。16S测序用于确定微生物群组成。针对IB4和Iba1的免疫荧光用于确定NTS重组和小胶质细胞激活。分离LFD大鼠的结状神经节并与不同细菌菌株共培养以确定神经毒性。HFD改变了肠道微生物群,厚壁菌门/拟杆菌门比例增加,促炎性变形菌增殖。HFD引发了迷走神经传入纤维的重组和NTS中小胶质细胞的激活,与体重增加相关。米诺环素处理的HFD大鼠表现出与LFD动物相当的微生物群谱。米诺环素抑制了HFD诱导的迷走神经传入纤维重组和NTS中小胶质细胞的激活,并减少了体脂积累。从HFD大鼠盲肠分离的变形菌对培养中的迷走神经传入神经元有毒性。我们的研究结果表明,饮食诱导的肠道微生物群变化可能会破坏迷走神经肠道-脑通讯,导致小胶质细胞激活和体脂积累增加。