Suppr超能文献

高能量饮食会引发肠道微生物群的变化、肠-脑迷走神经通讯的重组,并增加体脂堆积。

Energy-dense diet triggers changes in gut microbiota, reorganization of gut‑brain vagal communication and increases body fat accumulation.

作者信息

Vaughn Alexandra C, Cooper Erin M, DiLorenzo Patricia M, O'Loughlin Levi J, Konkel Michael E, Peters James H, Hajnal Andras, Sen Tanusree, Lee Sun Hye, de La Serre Claire B, Czaja Krzysztof

机构信息

Washington State University, Integrative Physiology and Neuroscience, Pullman, WA, USA.

Binghamton University, Psychology, Binghamton, NY, USA.

出版信息

Acta Neurobiol Exp (Wars). 2017;77(1):18-30. doi: 10.21307/ane-2017-033.

Abstract

Obesity is associated with consumption of energy-dense diets and development of systemic inflammation. Gut microbiota play a role in energy harvest and inflammation and can influence the change from lean to obese phenotypes. The nucleus of the solitary tract (NTS) is a brain target for gastrointestinal signals modulating satiety and alterations in gut-brain vagal pathway may promote overeating and obesity. Therefore, we tested the hypothesis that high-fat diet‑induced changes in gut microbiota alter vagal gut-brain communication associated with increased body fat accumulation. Sprague-Dawley rats consumed a low energy‑dense rodent diet (LFD; 3.1 kcal/g) or high energy‑dense diet (HFD, 5.24 kcal/g). Minocycline was used to manipulate gut microbiota composition. 16S Sequencing was used to determine microbiota composition. Immunofluorescence against IB4 and Iba1 was used to determine NTS reorganization and microglia activation. Nodose ganglia from LFD rats were isolated and co-cultured with different bacteria strains to determine neurotoxicity. HFD altered gut microbiota with increases in Firmicutes/Bacteriodetes ratio and in pro-inflammatory Proteobacteria proliferation. HFD triggered reorganization of vagal afferents and microglia activation in the NTS, associated with weight gain. Minocycline-treated HFD rats exhibited microbiota profile comparable to LFD animals. Minocycline suppressed HFD‑induced reorganization of vagal afferents and microglia activation in the NTS, and reduced body fat accumulation. Proteobacteria isolated from cecum of HFD rats were toxic to vagal afferent neurons in culture. Our findings show that diet‑induced shift in gut microbiome may disrupt vagal gut‑brain communication resulting in microglia activation and increased body fat accumulation.

摘要

肥胖与高能量密度饮食的摄入以及全身炎症的发展有关。肠道微生物群在能量获取和炎症中发挥作用,并可影响从瘦型到肥胖型表型的转变。孤束核(NTS)是调节饱腹感的胃肠道信号的脑靶点,肠道-脑迷走神经通路的改变可能促进暴饮暴食和肥胖。因此,我们检验了以下假设:高脂饮食引起的肠道微生物群变化会改变与体脂积累增加相关的迷走神经肠道-脑通讯。Sprague-Dawley大鼠食用低能量密度的啮齿动物饮食(LFD;3.1千卡/克)或高能量密度饮食(HFD,5.24千卡/克)。米诺环素用于操控肠道微生物群组成。16S测序用于确定微生物群组成。针对IB4和Iba1的免疫荧光用于确定NTS重组和小胶质细胞激活。分离LFD大鼠的结状神经节并与不同细菌菌株共培养以确定神经毒性。HFD改变了肠道微生物群,厚壁菌门/拟杆菌门比例增加,促炎性变形菌增殖。HFD引发了迷走神经传入纤维的重组和NTS中小胶质细胞的激活,与体重增加相关。米诺环素处理的HFD大鼠表现出与LFD动物相当的微生物群谱。米诺环素抑制了HFD诱导的迷走神经传入纤维重组和NTS中小胶质细胞的激活,并减少了体脂积累。从HFD大鼠盲肠分离的变形菌对培养中的迷走神经传入神经元有毒性。我们的研究结果表明,饮食诱导的肠道微生物群变化可能会破坏迷走神经肠道-脑通讯,导致小胶质细胞激活和体脂积累增加。

相似文献

2
Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity.
Physiol Behav. 2017 May 1;173:305-317. doi: 10.1016/j.physbeh.2017.02.027. Epub 2017 Feb 27.
3
Gut microbiota composition modulates inflammation and structure of the vagal afferent pathway.
Physiol Behav. 2020 Oct 15;225:113082. doi: 10.1016/j.physbeh.2020.113082. Epub 2020 Jul 16.
6
Gut bacteria interaction with vagal afferents.
Brain Res. 2018 Aug 15;1693(Pt B):134-139. doi: 10.1016/j.brainres.2018.01.012. Epub 2018 Jan 31.
7
Lean rats gained more body weight than obese ones from a high-fibre diet.
Br J Nutr. 2015 Oct 28;114(8):1188-94. doi: 10.1017/S0007114515002858. Epub 2015 Aug 28.
8
High fat diet induced changes in gastric vagal afferent response to adiponectin.
Physiol Behav. 2015 Dec 1;152(Pt B):354-62. doi: 10.1016/j.physbeh.2015.06.016. Epub 2015 Jun 12.
9
Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy.
Neurosci Lett. 2012 Mar 28;513(1):31-6. doi: 10.1016/j.neulet.2012.01.079. Epub 2012 Feb 10.
10
Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice.
Cell Rep. 2017 Nov 7;21(6):1521-1533. doi: 10.1016/j.celrep.2017.10.056.

引用本文的文献

1
Balancing Microglial Density and Activation in Central Nervous System Development and Disease.
Curr Issues Mol Biol. 2025 May 9;47(5):344. doi: 10.3390/cimb47050344.
2
Recent Advances in Gut Microbiota in Psoriatic Arthritis.
Nutrients. 2025 Apr 11;17(8):1323. doi: 10.3390/nu17081323.
3
Gut microbiota and associated metabolites: key players in high-fat diet-induced chronic diseases.
Gut Microbes. 2025 Dec;17(1):2494703. doi: 10.1080/19490976.2025.2494703. Epub 2025 Apr 22.
4
Vagal Sensory Gut-Brain Pathways That Control Eating-Satiety and Beyond.
Compr Physiol. 2025 Apr;15(2):e70010. doi: 10.1002/cph4.70010.
5
Level of intestinal permeability markers and selected aspects of diet and BMI of Polish e-sports players.
J Health Popul Nutr. 2025 Mar 27;44(1):90. doi: 10.1186/s41043-025-00775-9.
8
Mechanosensation of the heart and gut elicits hypometabolism and vigilance in mice.
Nat Metab. 2025 Feb;7(2):263-275. doi: 10.1038/s42255-024-01205-6. Epub 2025 Jan 17.
9
Microbial Champions: The Influence of Gut Microbiota on Athletic Performance via the Gut-Brain Axis.
Open Access J Sports Med. 2024 Dec 13;15:209-228. doi: 10.2147/OAJSM.S485703. eCollection 2024.
10
Physiopathological Roles of White Adiposity and Gut Functions in Neuroinflammation.
Int J Mol Sci. 2024 Oct 31;25(21):11741. doi: 10.3390/ijms252111741.

本文引用的文献

1
Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism.
PLoS One. 2015 Nov 12;10(11):e0142352. doi: 10.1371/journal.pone.0142352. eCollection 2015.
2
4
One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice.
Biochem Biophys Res Commun. 2015 Sep 4;464(4):1157-1162. doi: 10.1016/j.bbrc.2015.07.097. Epub 2015 Jul 21.
5
High-fat diet induces toll-like receptor 4-dependent macrophage/microglial cell activation and retinal impairment.
Invest Ophthalmol Vis Sci. 2015 May;56(5):3041-50. doi: 10.1167/iovs.15-16504.
6
Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters.
PLoS One. 2015 May 18;10(5):e0126931. doi: 10.1371/journal.pone.0126931. eCollection 2015.
7
Minocycline attenuates pain by inhibiting spinal microglia activation in diabetic rats.
Mol Med Rep. 2015 Aug;12(2):2677-82. doi: 10.3892/mmr.2015.3735. Epub 2015 May 6.
9
Sleeve gastrectomy and Roux-en-Y gastric bypass alter the gut-brain communication.
Neural Plast. 2015;2015:601985. doi: 10.1155/2015/601985. Epub 2015 Feb 3.
10
Vagal plasticity the key to obesity.
Mol Metab. 2014 Oct 19;3(9):855-6. doi: 10.1016/j.molmet.2014.09.009. eCollection 2014 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验