CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190, P. R. China.
School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences (CAS) , Beijing 100049, P. R. China.
J Am Chem Soc. 2017 Apr 26;139(16):5916-5922. doi: 10.1021/jacs.7b01763. Epub 2017 Apr 14.
Lithium metal is a promising battery anode. However, inhomogeneous mass and charge transfers across the Li/electrolyte interface result in formation of dendritic Li and "dead" Li, and an unstable solid electrolyte interphase, which incur serious problems to impede its service in rechargeable batteries. Here, we show that the above problems can be mitigated by regulating the interfacial mass/charge transfer. The key to our strategy is hybrid Li storage in onion-like, graphitized spherical C granules wired on a three-dimensional conducting skeleton, which enhances the negativity of surface charge of the C host to contribute to a uniform Li plating while also forming stable Li/C intercalation compounds to offset any irreversible Li loss during cycling. As a result, the anode shows a suppressed dendrite formation and a high Li utilization >95%, enabling a practical Li battery to strike a long lifespan of 1000 cycles at a surplus Li of merely 5%.
金属锂是一种很有前途的电池阳极。然而,在锂/电解质界面上不均匀的质量和电荷转移导致枝晶锂和“死”锂的形成,以及不稳定的固体电解质界面相,这给其在可充电电池中的应用带来了严重的问题。在这里,我们表明,通过调节界面的质量/电荷转移可以缓解上述问题。我们策略的关键是洋葱状、石墨化球形 C 颗粒在三维导电骨架上的混合锂存储,这增强了 C 主体表面电荷的负电性,有助于均匀的锂电镀,同时也形成了稳定的 Li/C 插层化合物,以抵消循环过程中的任何不可逆的锂损失。因此,该阳极表现出抑制枝晶形成和高锂利用率(>95%),使实用的锂电池在仅过剩 5%的锂的情况下能够达到 1000 次循环的长寿命。