Ivanov Alexander G, Velitchkova Maya Y, Allakhverdiev Suleyman I, Huner Norman P A
Department of Biology, University of Western Ontario, 1151 Richmond Street N., London, ON, N6A 5B7, Canada.
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bl. 21, 1113, Sofia, Bulgaria.
Photosynth Res. 2017 Sep;133(1-3):17-30. doi: 10.1007/s11120-017-0383-x. Epub 2017 Apr 8.
Temperature is one of the main factors controlling the formation, development, and functional performance of the photosynthetic apparatus in all photoautotrophs (green plants, algae, and cyanobacteria) on Earth. The projected climate change scenarios predict increases in air temperature across Earth's biomes ranging from moderate (3-4 °C) to extreme (6-8 °C) by the year 2100 (IPCC in Climate change 2007: The physical science basis: summery for policymakers, IPCC WG1 Fourth Assessment Report 2007; Climate change 2014: Mitigation of Climate Change, IPCC WG3 Fifth Assessment Report 2014). In some areas, especially of the Northern hemisphere, even more extreme warm seasonal temperatures may occur, which possibly will cause significant negative effects on the development, growth, and yield of important agricultural crops. It is well documented that high temperatures can cause direct damages of the photosynthetic apparatus and photosystem II (PSII) is generally considered to be the primary target of heat-induced inactivation of photosynthesis. However, since photosystem I (PSI) is considered to determine the global amount of enthalpy in living systems (Nelson in Biochim Biophys Acta 1807:856-863, 2011; Photosynth Res 116:145-151, 2013), the effects of elevated temperatures on PSI might be of vital importance for regulating the photosynthetic response of all photoautotrophs in the changing environment. In this review, we summarize the experimental data that demonstrate the critical impact of heat-induced alterations on the structure, composition, and functional performance of PSI and their significant implications on photosynthesis under future climate change scenarios.
温度是控制地球上所有光合自养生物(绿色植物、藻类和蓝细菌)光合器官形成、发育及功能表现的主要因素之一。预计到2100年,全球气候变化情景预测全球各生物群落的气温将有中度(3-4°C)到极端(6-8°C)的升高(IPCC,《气候变化2007:物理科学基础:决策者摘要》,IPCC第一工作组第四次评估报告2007;《气候变化2014:气候变化的缓解》,IPCC第三工作组第五次评估报告2014)。在一些地区,尤其是北半球,可能会出现更极端的暖季温度,这可能会对重要农作物的发育、生长和产量造成重大负面影响。已有充分记录表明,高温会对光合器官造成直接损害,而光系统II(PSII)通常被认为是热诱导光合作用失活的主要靶点。然而,由于光系统I(PSI)被认为决定了生物系统中的全球焓含量(Nelson,《生物化学与生物物理学报》1807:856-863,2011;《光合作用研究》116:145-151,2013),因此温度升高对PSI的影响对于调节变化环境中所有光合自养生物的光合反应可能至关重要。在本综述中,我们总结了实验数据,这些数据证明了热诱导变化对PSI的结构、组成和功能表现的关键影响,以及它们在未来气候变化情景下对光合作用的重大影响。