CIC bioGUNE , Bizkaia Technology Park, Building 801 A, 48170 Derio, Spain.
Langmuir. 2017 May 9;33(18):4407-4413. doi: 10.1021/acs.langmuir.7b00359. Epub 2017 Apr 26.
The efficiency with which square-wave voltammetry differentiates faradic and charging currents makes it a particularly sensitive electroanalytical approach, as evidenced by its ability to measure nanomolar or even picomolar concentrations of electroactive analytes. Because of the relative complexity of the potential sweep it uses, however, the extraction of detailed kinetic and mechanistic information from square-wave data remains challenging. In response, we demonstrate here a numerical approach by which square-wave data can be used to determine electron transfer rates. Specifically, we have developed a numerical approach in which we model the height and the shape of voltammograms collected over a range of square-wave frequencies and amplitudes to simulated voltammograms as functions of the heterogeneous rate constant and the electron transfer coefficient. As validation of the approach, we have used it to determine electron transfer kinetics in both freely diffusing and diffusionless surface-tethered species, obtaining electron transfer kinetics in all cases in good agreement with values derived using non-square-wave methods.
方波伏安法区分法拉第电流和充电电流的效率使其成为一种特别灵敏的电分析方法,这一点可以从其测量纳摩尔甚至皮摩尔浓度的电化学活性分析物的能力得到证明。然而,由于它所使用的电位扫描相对复杂,因此从方波数据中提取详细的动力学和机理信息仍然具有挑战性。有鉴于此,我们在这里展示了一种数值方法,通过该方法可以使用方波数据来确定电子转移速率。具体来说,我们开发了一种数值方法,其中我们将模型的高度和形状通过一系列方波频率和幅度收集的伏安图作为异质速率常数和电子转移系数的函数来模拟伏安图。作为该方法的验证,我们已经将其用于确定在自由扩散和无扩散表面束缚物种中的电子转移动力学,并且在所有情况下都获得了与使用非方波方法得出的值非常吻合的电子转移动力学。