Suppr超能文献

采用光子计数探测器技术的超高空间分辨率多能量CT

Ultra-High Spatial Resolution, Multi-Energy CT using Photon Counting Detector Technology.

作者信息

Leng S, Gutjahr R, Ferrero A, Kappler S, Henning A, Halaweish A, Zhou W, Montoya J, McCollough C

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN.

CAMP, Technical University of Munich, Garching (Munich), Germany; Siemens Healthcare, Forchheim, Germany.

出版信息

Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10132. doi: 10.1117/12.2255589. Epub 2017 Mar 9.

Abstract

Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.

摘要

在一台研究用的全身光子计数探测器(PCD)CT扫描仪上实现了两种超高分辨率(UHR)成像模式,每种模式有两个能量阈值,分别称为锐利模式和UHR模式。UHR模式在等中心处两种能量阈值下的像素尺寸均为0.25毫米,准直为32×0.25毫米。锐利模式在低能量阈值下的像素为0.25毫米,高能量阈值下为0.5毫米,准直为48×0.25毫米。使用这两种模式以及标准成像模式(称为宏模式,像素0.5毫米,准直32×0.5毫米)对具有混合矿物质成分的肾结石和不同形状的肺结节进行扫描。对这三种模式的评估和比较集中在利用高空间分辨率能力准确描绘解剖结构的能力以及利用多能量能力量化结石成分的能力上。锐利模式和UHR模式的低能量阈值图像由于实现了更高的空间分辨率,显示出更好的形状和纹理信息,尽管噪声也更高。当使用标准剂量时,与标准分辨率(宏模式)相比,UHR在多能量分析中未显示出明显优势。这是由于高分辨率图像中噪声过大。然而,高剂量的UHR扫描在多能量分析方面比常规剂量的宏模式有所改善。为了在多能量分析中充分利用更高的空间分辨率,需要增加辐射剂量或应用降噪技术。

相似文献

1
Ultra-High Spatial Resolution, Multi-Energy CT using Photon Counting Detector Technology.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10132. doi: 10.1117/12.2255589. Epub 2017 Mar 9.
7
9
Effects of Detector Sampling on Noise Reduction in Clinical Photon-Counting Whole-Body Computed Tomography.
Invest Radiol. 2020 Feb;55(2):111-119. doi: 10.1097/RLI.0000000000000616.
10
Computed tomography with a full FOV photon-counting detector in a clinical setting, the first experience.
Eur J Radiol. 2021 Apr;137:109614. doi: 10.1016/j.ejrad.2021.109614. Epub 2021 Feb 24.

引用本文的文献

1
Photon-counting computed tomography in radiology.
Pol J Radiol. 2024 Sep 11;89:e433-e442. doi: 10.5114/pjr/191743. eCollection 2024.
4
High yield clinical applications for photon counting CT in neurovascular imaging.
Br J Radiol. 2024 May 7;97(1157):894-901. doi: 10.1093/bjr/tqae058.
5
Spectral imaging in the pediatric chest: past, present and future.
Pediatr Radiol. 2022 Sep;52(10):1910-1920. doi: 10.1007/s00247-022-05404-9. Epub 2022 Jun 21.
7
Evaluation of Coronary Plaques and Stents with Conventional and Photon-counting CT: Benefits of High-Resolution Photon-counting CT.
Radiol Cardiothorac Imaging. 2021 Oct 28;3(5):e210102. doi: 10.1148/ryct.2021210102. eCollection 2021 Oct.
8
Coronary calcium scoring potential of large field-of-view spectral photon-counting CT: a phantom study.
Eur Radiol. 2022 Jan;32(1):152-162. doi: 10.1007/s00330-021-08152-w. Epub 2021 Jul 13.
9
A Clinically Driven Task-Based Comparison of Photon Counting and Conventional Energy Integrating CT for Soft Tissue, Vascular, and High-Resolution Tasks.
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):588-595. doi: 10.1109/trpms.2020.3019954. Epub 2020 Aug 27.
10
Metal artifact reduction and tumor detection using photon-counting multi-energy computed tomography.
PLoS One. 2021 Mar 5;16(3):e0247355. doi: 10.1371/journal.pone.0247355. eCollection 2021.

本文引用的文献

1
Dose-efficient ultrahigh-resolution scan mode using a photon counting detector computed tomography system.
J Med Imaging (Bellingham). 2016 Oct;3(4):043504. doi: 10.1117/1.JMI.3.4.043504. Epub 2016 Dec 22.
2
Abdominal Imaging with Contrast-enhanced Photon-counting CT: First Human Experience.
Radiology. 2016 Apr;279(1):239-45. doi: 10.1148/radiol.2016152601. Epub 2016 Feb 3.
3
Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.
Phys Med Biol. 2016 Feb 21;61(4):1572-95. doi: 10.1088/0031-9155/61/4/1572. Epub 2016 Feb 2.
4
Vision 20/20: Single photon counting x-ray detectors in medical imaging.
Med Phys. 2013 Oct;40(10):100901. doi: 10.1118/1.4820371.
5
Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays.
Phys Med Biol. 2012 Mar 21;57(6):1595-615. doi: 10.1088/0031-9155/57/6/1595. Epub 2012 Mar 7.
6
Photon counting spectral CT versus conventional CT: comparative evaluation for breast imaging application.
Phys Med Biol. 2011 Apr 7;56(7):1905-30. doi: 10.1088/0031-9155/56/7/001. Epub 2011 Mar 2.
7
Micro-computed tomography for analysis of urinary calculi.
Urol Res. 2010 Dec;38(6):477-84. doi: 10.1007/s00240-010-0326-x. Epub 2010 Oct 22.
9
Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.
IEEE Trans Nucl Sci. 2009;56(3):535-542. doi: 10.1109/TNS.2009.2013709.
10
Energy-resolved computed tomography: first experimental results.
Phys Med Biol. 2008 Oct 21;53(20):5595-613. doi: 10.1088/0031-9155/53/20/002. Epub 2008 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验