Suppr超能文献

使用基于稀疏块的变形学习框架预测婴儿MRI表现和解剖结构演变

Prediction of Infant MRI Appearance and Anatomical Structure Evolution using Sparse Patch-based Metamorphosis Learning Framework.

作者信息

Rekik Islem, Li Gang, Wu Guorong, Lin Weili, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA.

出版信息

Patch Based Tech Med Imaging (2015). 2015 Oct;9467:197-204. doi: 10.1007/978-3-319-28194-0_24. Epub 2016 Jan 8.

Abstract

Magnetic resonance imaging (MRI) of pediatric brain provides invaluable information for early normal and abnormal brain development. Longitudinal neuroimaging has spanned various research works on examining infant brain development patterns. However, studies on predicting postnatal brain image evolution remain scarce, which is very challenging due to the dynamic tissue contrast change and even inversion in postnatal brains. In this paper, we unprecedentedly propose a dual image intensity and anatomical structure (label) prediction framework that nicely links the geodesic image metamorphosis model with sparse patch-based image representation, thereby defining spatiotemporal metamorphic patches encoding both image photometric and geometric deformation. In the training stage, we learn the 4D metamorphosis trajectories for each training subject. In the prediction stage, we define various strategies to sparsely represent each patch in the testing image using the training metamorphosis patches; as we progressively increment the richness of the patch (from appearance-based to multimodal kinetic patches). We used the proposed framework to predict 6, 9 and 12-month brain MR image intensity and structure (white and gray matter maps) from 3 months in 10 infants. Our seminal work showed promising preliminary prediction results for the spatiotemporally complex, drastically changing brain images.

摘要

小儿脑部的磁共振成像(MRI)为早期正常和异常的脑部发育提供了极其宝贵的信息。纵向神经成像涵盖了各种关于检查婴儿脑部发育模式的研究工作。然而,关于预测出生后脑图像演变的研究仍然很少,由于出生后脑组织对比度的动态变化甚至反转,这极具挑战性。在本文中,我们首次提出了一种双图像强度和解剖结构(标签)预测框架,该框架将测地线图像变形模型与基于稀疏补丁的图像表示巧妙地联系起来,从而定义了编码图像光度和几何变形的时空变形补丁。在训练阶段,我们为每个训练对象学习4D变形轨迹。在预测阶段,我们定义了各种策略,使用训练变形补丁稀疏表示测试图像中的每个补丁;随着我们逐步增加补丁的丰富度(从基于外观的补丁到多模态动态补丁)。我们使用所提出的框架对10名婴儿从3个月大时的脑部图像预测6个月、9个月和12个月时的脑磁共振图像强度和结构(白质和灰质图谱)。我们的开创性工作在时空复杂、变化剧烈的脑图像预测方面显示出了有前景的初步结果。

相似文献

2
Improved image registration by sparse patch-based deformation estimation.基于稀疏块的变形估计改进图像配准
Neuroimage. 2015 Jan 15;105:257-68. doi: 10.1016/j.neuroimage.2014.10.019. Epub 2014 Oct 16.
6
Reconstruction of 7T-Like Images From 3T MRI.从3T磁共振成像重建类似7T的图像。
IEEE Trans Med Imaging. 2016 Sep;35(9):2085-97. doi: 10.1109/TMI.2016.2549918. Epub 2016 Apr 1.
8
Scalable Joint Segmentation and Registration Framework for Infant Brain Images.用于婴儿脑图像的可扩展联合分割与配准框架
Neurocomputing (Amst). 2017 Mar 15;229:54-62. doi: 10.1016/j.neucom.2016.05.107. Epub 2016 Nov 16.
9
Patch spaces and fusion strategies in patch-based label fusion.基于图块的标签融合中的补丁空间和融合策略。
Comput Med Imaging Graph. 2019 Jan;71:79-89. doi: 10.1016/j.compmedimag.2018.11.004. Epub 2018 Dec 6.

引用本文的文献

5
Baby brain atlases.婴儿脑图谱。
Neuroimage. 2019 Jan 15;185:865-880. doi: 10.1016/j.neuroimage.2018.04.003. Epub 2018 Apr 3.
6
Computational neuroanatomy of baby brains: A review.婴儿大脑的计算神经解剖学:综述。
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验