Haris Asad, Simon Noah, Shojaie Ali
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020 - 2207 Main Mall, Vancouver, BC, Canada V6T 1Z4.
Department of Biostatistics, University of Washington, Seattle, WA 98195-7232, USA.
J Mach Learn Res. 2022 Jan-Dec;23.
We present a unified framework for estimation and analysis of generalized additive models in high dimensions. The framework defines a large class of penalized regression estimators, encompassing many existing methods. An efficient computational algorithm for this class is presented that easily scales to thousands of observations and features. We prove minimax optimal convergence bounds for this class under a weak compatibility condition. In addition, we characterize the rate of convergence when this compatibility condition is not met. Finally, we also show that the optimal penalty parameters for structure and sparsity penalties in our framework are linked, allowing cross-validation to be conducted over only a single tuning parameter. We complement our theoretical results with empirical studies comparing some existing methods within this framework.
我们提出了一个用于高维广义相加模型估计与分析的统一框架。该框架定义了一大类惩罚回归估计量,涵盖了许多现有方法。针对此类估计量给出了一种高效的计算算法,该算法能够轻松扩展到包含数千个观测值和特征的数据集。我们在一个弱相容性条件下证明了此类估计量的极小极大最优收敛界。此外,我们刻画了在不满足该相容性条件时的收敛速率。最后,我们还表明,我们框架中用于结构和稀疏性惩罚的最优惩罚参数是相关联的,这使得仅需对单个调优参数进行交叉验证即可。我们通过实证研究比较了该框架内的一些现有方法,以此补充我们的理论结果。