Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University , Xi'an 710049, China.
Department of Chemistry and 4D LABORATORIES, Simon Fraser University , Burnaby, British Columbia V5A 1S6, Canada.
ACS Nano. 2017 Sep 26;11(9):9286-9293. doi: 10.1021/acsnano.7b04653. Epub 2017 Aug 18.
Electric field control of dynamic spin interactions is promising to break through the limitation of the magnetostatic interaction based magnetoelectric (ME) effect. In this work, electric field control of the two-magnon scattering (TMS) effect excited by in-plane lattice rotation has been demonstrated in a LaSrMnO (LSMO)/Pb(MnNb)-PbTiO (PMN-PT) (011) multiferroic heterostructure. Compared with the conventional strain-mediated ME effect, a giant enhancement of ME effect up to 950% at the TMS critical angle is precisely determined by angular resolution of the ferromagnetic resonance (FMR) measurement. Particularly, a large electric field modulation of magnetic anisotropy (464 Oe) and FMR line width (401 Oe) is achieved at 173 K. The electric-field-controllable TMS effect and its correlated ME effect have been explained by electric field modulation of the planar spin interactions triggered by spin-lattice coupling. The enhancement of the ME effect at various temperatures and spin dynamics control are promising paradigms for next-generation voltage-tunable spintronic devices.
电场控制动态自旋相互作用有望突破基于静磁相互作用的磁电(ME)效应的限制。在这项工作中,通过平面晶格旋转激发的双磁子散射(TMS)效应的电场控制在 LaSrMnO(LSMO)/Pb(MnNb)-PbTiO(PMN-PT)(011)多铁异质结构中得到了证明。与传统的应变介导的 ME 效应相比,通过铁磁共振(FMR)测量的角分辨率精确地确定了 TMS 临界角处高达 950%的 ME 效应的巨大增强。特别是,在 173 K 时实现了磁各向异性(464 Oe)和 FMR 线宽(401 Oe)的大电场调制。通过自旋-晶格耦合引发的平面自旋相互作用的电场调制解释了 TMS 效应及其相关的 ME 效应。在各种温度下增强的 ME 效应和自旋动力学控制为下一代电压可调自旋电子器件提供了有前景的范例。