Suppr超能文献

等离子体激元缝隙共振的模式修饰是通过与分子激子的强耦合实现的。

Mode Modification of Plasmonic Gap Resonances Induced by Strong Coupling with Molecular Excitons.

机构信息

State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University , Hangzhou 310027, China.

MacDiarmid Institute for Advanced Materials and Nanotechnology, Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, University of Otago , P.O. Box 56, Dunedin 9016, New Zealand.

出版信息

Nano Lett. 2017 May 10;17(5):3246-3251. doi: 10.1021/acs.nanolett.7b00858. Epub 2017 Apr 12.

Abstract

Plasmonic cavities can be used to control the atom-photon coupling process at the nanoscale, since they provide an ultrahigh density of optical states in an exceptionally small mode volume. Here we demonstrate strong coupling between molecular excitons and plasmonic resonances (so-called plexcitonic coupling) in a film-coupled nanocube cavity, which can induce profound and significant spectral and spatial modifications to the plasmonic gap modes. Within the spectral span of a single gap mode in the nanocube-film cavity with a 3 nm wide gap, the introduction of narrow-band J-aggregate dye molecules not only enables an anticrossing behavior in the spectral response but also splits the single spatial mode into two distinct modes that are easily identified by their far-field scattering profiles. Simulation results confirm the experimental findings, and the sensitivity of the plexcitonic coupling is explored using digital control of the gap spacing. Our work opens up a new perspective to study the strong coupling process, greatly extending the functionality of nanophotonic systems, with the potential to be applied in cavity quantum electrodynamic systems.

摘要

等离子体激元腔可用于在纳米尺度上控制原子-光子耦合过程,因为它们在极小的模式体积中提供了超高密度的光态。在这里,我们在薄膜耦合纳米立方腔中演示了分子激子与等离子体共振(所谓的 plexcitonic 耦合)之间的强耦合,这可以对等离子体间隙模产生深刻而显著的光谱和空间修饰。在纳米立方薄膜腔中,单个间隙模的光谱范围内,引入宽带 J-聚集体染料分子不仅使光谱响应中出现交叉行为,而且将单个空间模式分裂为两个不同的模式,其远场散射轮廓很容易识别。模拟结果证实了实验结果,并通过数字控制间隙间距来探索 plexcitonic 耦合的灵敏度。我们的工作为研究强耦合过程开辟了新的视角,极大地扩展了纳米光子系统的功能,有望应用于腔量子电动力学系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验