Das Kalyan, Martinez Sergio E, Arnold Eddy
Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA.
Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
Antimicrob Agents Chemother. 2017 May 24;61(6). doi: 10.1128/AAC.00224-17. Print 2017 Jun.
HIV-1 reverse transcriptase (RT) is targeted by multiple drugs. RT mutations that confer resistance to nucleoside RT inhibitors (NRTIs) emerge during clinical use. Q151M and four associated mutations, A62V, V75I, F77L, and F116Y, were detected in patients failing therapies with dideoxynucleosides (didanosine [ddI], zalcitabine [ddC]) and/or zidovudine (AZT). The cluster of the five mutations is referred to as the Q151M complex (Q151Mc), and an RT or virus containing Q151Mc exhibits resistance to multiple NRTIs. To understand the structural basis for Q151M and Q151Mc resistance, we systematically determined the crystal structures of the wild-type RT/double-stranded DNA (dsDNA)/dATP (complex I), wild-type RT/dsDNA/ddATP (complex II), Q151M RT/dsDNA/dATP (complex III), Q151Mc RT/dsDNA/dATP (complex IV), and Q151Mc RT/dsDNA/ddATP (complex V) ternary complexes. The structures revealed that the deoxyribose rings of dATP and ddATP have 3'-endo and 3'-exo conformations, respectively. The single mutation Q151M introduces conformational perturbation at the deoxynucleoside triphosphate (dNTP)-binding pocket, and the mutated pocket may exist in multiple conformations. The compensatory set of mutations in Q151Mc, particularly F116Y, restricts the side chain flexibility of M151 and helps restore the DNA polymerization efficiency of the enzyme. The altered dNTP-binding pocket in Q151Mc RT has the Q151-R72 hydrogen bond removed and has a switched conformation for the key conserved residue R72 compared to that in wild-type RT. On the basis of a modeled structure of hepatitis B virus (HBV) polymerase, the residues R72, Y116, M151, and M184 in Q151Mc HIV-1 RT are conserved in wild-type HBV polymerase as residues R41, Y89, M171, and M204, respectively; functionally, both Q151Mc HIV-1 and wild-type HBV are resistant to dideoxynucleoside analogs.
HIV-1逆转录酶(RT)是多种药物的作用靶点。在临床使用过程中会出现对核苷类逆转录酶抑制剂(NRTIs)产生耐药性的RT突变。在接受双脱氧核苷(去羟肌苷[ddI]、扎西他滨[ddC])和/或齐多夫定(AZT)治疗失败的患者中检测到Q151M及四个相关突变,即A62V、V75I、F77L和F116Y。这五个突变的组合被称为Q151M复合体(Q151Mc),含有Q151Mc的RT或病毒对多种NRTIs表现出耐药性。为了了解Q151M和Q151Mc耐药的结构基础,我们系统地测定了野生型RT/双链DNA(dsDNA)/dATP(复合体I)、野生型RT/dsDNA/ddATP(复合体II)、Q151M RT/dsDNA/dATP(复合体III)、Q151Mc RT/dsDNA/dATP(复合体IV)和Q151Mc RT/dsDNA/ddATP(复合体V)三元复合体的晶体结构。结构显示,dATP和ddATP的脱氧核糖环分别具有3'-内型和3'-外型构象。单突变Q151M在脱氧核苷三磷酸(dNTP)结合口袋处引入构象扰动,且突变口袋可能以多种构象存在。Q151Mc中的补偿性突变组合,特别是F116Y,限制了M151侧链的灵活性,并有助于恢复该酶的DNA聚合效率。与野生型RT相比,Q151Mc RT中改变的dNTP结合口袋去除了Q151-R72氢键,并且关键保守残基R72的构象发生了改变。基于乙型肝炎病毒(HBV)聚合酶的模拟结构,Q151Mc HIV-1 RT中的残基R72、Y116、M151和M184在野生型HBV聚合酶中分别保守为残基R41、Y89、M171和M204;在功能上,Q151Mc HIV-1和野生型HBV对双脱氧核苷类似物均具有耐药性。