文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

解析磁纳米立方体型滞回损耗的黏度效应。

Unraveling viscosity effects on the hysteresis losses of magnetic nanocubes.

机构信息

iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain.

出版信息

Nanoscale. 2017 Apr 20;9(16):5094-5101. doi: 10.1039/c7nr00810d.


DOI:10.1039/c7nr00810d
PMID:28397910
Abstract

Hysteresis losses in magnetic nanoparticles constitute the basis of magnetic hyperthermia for delivering a local thermal stress. Nevertheless, this therapeutic modality is only to be realised through a careful appraisal of the best possible intrinsic and extrinsic conditions to the nanoparticles for which they maximise and preserve their heating capabilities. Low frequency (100 kHz) hysteresis loops accurately probe the dynamical magnetic response of magnetic nanoparticles in a more reliable manner than calorimetry measurements, providing conclusive quantitative data under different experimental conditions. We consider here a set of iron oxide or cobalt ferrite nanocubes of different sizes, through which we experimentally and theoretically study the influence of the viscosity of the medium on the low frequency hysteresis loops of magnetic colloids, and hence their ability to produce and dissipate heat to the surroundings. We analyse the role of nanoparticle size, size distribution, chemical composition, and field intensity in making the magnetisation dynamics sensitive to viscosity. Numerical simulations using the stochastic Landau-Lifshitz-Gilbert equation model the experimental observations in excellent agreement. These results represent an important contribution towards predicting viscosity effects and hence to maximise heat dissipation from magnetic nanoparticles regardless of the environment.

摘要

磁滞损耗是磁热疗中利用局部热应力的基础。然而,这种治疗方法只有在仔细评估最佳内在和外在条件下才能实现,使纳米粒子能够最大化并保持其加热能力。低频(100 kHz)磁滞回线比量热测量更可靠地探测磁性纳米粒子的动态磁响应,在不同的实验条件下提供确凿的定量数据。我们在这里考虑了一组不同尺寸的氧化铁或钴铁氧体纳米立方体,通过实验和理论研究了介质粘度对磁性胶体低频磁滞回线的影响,以及它们向周围环境产生和耗散热量的能力。我们分析了纳米粒子尺寸、尺寸分布、化学成分和场强在使磁化动力学对粘度敏感方面的作用。使用随机朗之万-李-吉尔伯特方程的数值模拟与实验观察结果非常吻合。这些结果为预测粘度效应做出了重要贡献,从而最大限度地从磁性纳米粒子中耗散热量,无论环境如何。

相似文献

[1]
Unraveling viscosity effects on the hysteresis losses of magnetic nanocubes.

Nanoscale. 2017-4-20

[2]
Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.

Biochim Biophys Acta Gen Subj. 2016-12-14

[3]
Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.

J Am Chem Soc. 2007-3-7

[4]
Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide nanoparticles.

Phys Chem Chem Phys. 2016-4-28

[5]
Di- and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications.

Nanoscale. 2021-8-28

[6]
Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia.

J Phys Condens Matter. 2008-9-24

[7]
An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples--a useful setup for magnetic hyperthermia applications.

Rev Sci Instrum. 2014-9

[8]
Coarse-graining in micromagnetic simulations of dynamic hysteresis loops.

J Phys Condens Matter. 2020-6-1

[9]
Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

Nanoscale. 2014-11-7

[10]
Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field.

Beilstein J Nanotechnol. 2023-4-14

引用本文的文献

[1]
Unraveling the Mn substitution effect on the anisotropy control and magnetic hyperthermia of MnFeO nanoparticles.

Nanoscale Horiz. 2025-8-4

[2]
Magnetic nanosheets: from iron oxide nanocubes to polydopamine embedded 2D clusters and their multi-purpose properties.

Nanoscale Horiz. 2025-4-7

[3]
Nanoplatforms for Magnetic-Photo-Heating of Thermo-Resistant Tumor Cells: Singular Synergic Therapeutic Effects at Mild Temperature.

Small. 2024-12

[4]
Protease-Mediated Contrast Enhancement of Multilayered Magneto-Gadolinium Nanostructures for Imaging and Magnetic Hyperthermia.

ACS Appl Mater Interfaces. 2024-2-14

[5]
Heating Capacity and Biocompatibility of Hybrid Nanoparticles for Magnetic Hyperthermia Treatment.

Int J Mol Sci. 2023-12-29

[6]
The magnetopyroelectric effect: heat-mediated magnetoelectricity in magnetic nanoparticle-ferroelectric polymer composites.

Mater Horiz. 2023-7-3

[7]
Monitoring magnetic nanoparticle clustering and immobilization with thermal noise magnetometry using optically pumped magnetometers.

Nanoscale Adv. 2023-3-15

[8]
Proton Therapy, Magnetic Nanoparticles and Hyperthermia as Combined Treatment for Pancreatic BxPC3 Tumor Cells.

Nanomaterials (Basel). 2023-2-21

[9]
Clickable Polymer Ligand-Functionalized Iron Oxide Nanocubes: A Promising Nanoplatform for 'Local Hot Spots' Magnetically Triggered Drug Release.

ACS Appl Mater Interfaces. 2022-11-2

[10]
Clot-targeted magnetic hyperthermia permeabilizes blood clots to make them more susceptible to thrombolysis.

J Thromb Haemost. 2022-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索