Institute for Science and Technology in Medicine (ISTM), Keele University, Stoke-on-Trent ST4 7QB, UK.
Nanoscale. 2014 Nov 7;6(21):12958-70. doi: 10.1039/c4nr03004d.
Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.
磁热疗利用交流刺激磁性纳米粒子产生热量以破坏癌细胞。虽然迄今报道的具有最高加热效果的磁性纳米粒子是由趋磁细菌产生的,但这些粒子被磁性阻断,除非磁场参数远超出临床限制,否则只有移动的粒子才会发生强烈加热。在这里,研究了由细菌 Geobacter sulfurreducens 细胞外产生的含有 Co 或 Zn 掺杂剂的纳米粒子,这些掺杂剂可以调节磁各向异性、饱和磁化强度和纳米粒子尺寸,从而在临床场约束内实现加热。通过频率相关的比吸收率(SAR)测量和使用关于悬浮多分散纳米粒子簇的现实模型的创新交流磁化率模拟,确定了 Co 或 Zn 掺杂的特定加热机制。虽然两种粒子类型都经历磁化弛豫并在低交流频率和场下的水中显示加热效应,但只有 Zn 掺杂的粒子即使被固定也能保持弛豫和磁滞损耗。在生物环境中,这种磁加热过程可能非常重要,因为在这种环境中,纳米粒子的迁移可能是不可能的。获得的 SAR 与临床条件有关,这些条件以及它们增强的 MRI 对比,表明生物成因的 Zn 掺杂纳米粒子在联合诊断和癌症治疗方面具有广阔的应用前景。
J Am Chem Soc. 2007-3-7
Mater Sci Eng C Mater Biol Appl. 2016-3-15
J Colloid Interface Sci. 2019-4-30
Int J Nanomedicine. 2017-8-28
J R Soc Interface. 2013-4-17
Mater Sci Eng C Mater Biol Appl. 2016-1-1
Biochim Biophys Acta Gen Subj. 2016-12-14
Nanomaterials (Basel). 2025-7-19
RSC Adv. 2023-4-26
Phys Rev Appl. 2019