文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于磁热疗应用的细菌合成的铁氧体纳米颗粒。

Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

机构信息

Institute for Science and Technology in Medicine (ISTM), Keele University, Stoke-on-Trent ST4 7QB, UK.

出版信息

Nanoscale. 2014 Nov 7;6(21):12958-70. doi: 10.1039/c4nr03004d.


DOI:10.1039/c4nr03004d
PMID:25232657
Abstract

Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.

摘要

磁热疗利用交流刺激磁性纳米粒子产生热量以破坏癌细胞。虽然迄今报道的具有最高加热效果的磁性纳米粒子是由趋磁细菌产生的,但这些粒子被磁性阻断,除非磁场参数远超出临床限制,否则只有移动的粒子才会发生强烈加热。在这里,研究了由细菌 Geobacter sulfurreducens 细胞外产生的含有 Co 或 Zn 掺杂剂的纳米粒子,这些掺杂剂可以调节磁各向异性、饱和磁化强度和纳米粒子尺寸,从而在临床场约束内实现加热。通过频率相关的比吸收率(SAR)测量和使用关于悬浮多分散纳米粒子簇的现实模型的创新交流磁化率模拟,确定了 Co 或 Zn 掺杂的特定加热机制。虽然两种粒子类型都经历磁化弛豫并在低交流频率和场下的水中显示加热效应,但只有 Zn 掺杂的粒子即使被固定也能保持弛豫和磁滞损耗。在生物环境中,这种磁加热过程可能非常重要,因为在这种环境中,纳米粒子的迁移可能是不可能的。获得的 SAR 与临床条件有关,这些条件以及它们增强的 MRI 对比,表明生物成因的 Zn 掺杂纳米粒子在联合诊断和癌症治疗方面具有广阔的应用前景。

相似文献

[1]
Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

Nanoscale. 2014-11-7

[2]
Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.

J Am Chem Soc. 2007-3-7

[3]
A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

Mater Sci Eng C Mater Biol Appl. 2016-3-15

[4]
Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia.

J Colloid Interface Sci. 2019-4-30

[5]
Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.

Int J Nanomedicine. 2017-8-28

[6]
Controlled cobalt doping in biogenic magnetite nanoparticles.

J R Soc Interface. 2013-4-17

[7]
Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators.

Mater Sci Eng C Mater Biol Appl. 2016-1-1

[8]
Modified MgFe2O4 Ferrimagnetic Nanoparticles to Improve Magnetic and AC Magnetically-Induced Heating Characteristics for Hyperthermia.

J Nanosci Nanotechnol. 2015-12

[9]
The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles.

Sci Rep. 2017-1-3

[10]
Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.

Biochim Biophys Acta Gen Subj. 2016-12-14

引用本文的文献

[1]
Enhanced Magnetic and Dielectric Performance in FeO@LiCrFeO Core/Shell Nanoparticles.

Nanomaterials (Basel). 2025-7-19

[2]
High-yield magnetosome production of Magnetospirillum magneticum strain AMB-1 in flask fermentation through simplified processing and optimized iron supplementation.

Biotechnol Lett. 2024-12

[3]
Optical Microscopy Using the Faraday Effect Reveals Magnetization Dynamics of Magnetic Nanoparticles in Biological Samples.

ACS Nano. 2024-2-5

[4]
Magnetic coagulometry: towards a new nanotechnological tool for monitoring coagulation in human whole blood.

Nanoscale. 2024-2-15

[5]
Study of physical properties of the LiMgFeO ferrite nanoparticles.

RSC Adv. 2023-4-26

[6]
Magnetic and spectroscopic properties of Ni-Zn-Al ferrite spinel: from the nanoscale to microscale.

RSC Adv. 2020-9-18

[7]
Synthesis and optical spectroscopy of NaY(VO):Eu phosphors for thermometry and display applications.

RSC Adv. 2022-3-8

[8]
Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications.

J Nanobiotechnology. 2021-4-27

[9]
Electrodecoration and Characterization of Superparamagnetic Iron Oxide Nanoparticles with Bioactive Synergistic Nanocopper: Magnetic Hyperthermia-Induced Ionic Release for Anti-Biofilm Action.

Antibiotics (Basel). 2021-1-27

[10]
Bubble Magnetometry of Nanoparticle Heterogeneity and Interaction.

Phys Rev Appl. 2019

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索