INRIM, strada delle Cacce 91, Torino TO 10135, Italy.
INRIM, strada delle Cacce 91, Torino TO 10135, Italy.
Biochim Biophys Acta Gen Subj. 2017 Jun;1861(6):1545-1558. doi: 10.1016/j.bbagen.2016.12.006. Epub 2016 Dec 14.
BACKGROUND: Magnetic hysteresis loops areas and hyperthermia on magnetic nanoparticles have been studied with the aim of providing reliable and reproducible methods of measuring the specific absorption rate (SAR). METHODS: The SAR of FeO nanoparticles with two different mean sizes, and NiZnFeO ferrites with 0 ≤ x ≤ 0.8 has been measured with three approaches: static hysteresis loops areas, dynamic hysteresis loops areas and hyperthermia of a water solution. For dynamic loops and thermometric measurements, specific experimental setups have been developed, that operate at comparable frequencies (≈ 69kHz and ≈ 100kHz respectively) and rf magnetic field peak values (up to 100mT). The hyperthermia setup has been fully modelled to provide a direct measurement of the SAR of the magnetic nanoparticles by taking into account the heat exchange with the surrounding environment in non-adiabatic conditions and the parasitic heating of the water due to ionic currents. RESULTS: Dynamic hysteresis loops are shown to provide an accurate determination of the SAR except for superparamagnetic samples, where the boundary with a blocked regime could be crossed in dynamic conditions. Static hysteresis loops consistently underestimate the specific absorption rate but can be used to select the most promising samples. CONCLUSIONS: A means of reliably measure SAR of magnetic nanoparticles by different approaches for hyperthermia applications is presented and its validity discussed by comparing different methods. GENERAL SIGNIFICANCE: This work fits within the general subject of metrological traceability in medicine with a specific focus on magnetic hyperthermia. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
背景:为了提供可靠和可重复的测量比吸收率 (SAR) 的方法,研究了磁性纳米粒子的磁滞回线面积和磁热现象。
方法:使用三种方法测量了两种不同平均尺寸的 FeO 纳米粒子和 0 ≤ x ≤ 0.8 的 NiZnFeO 铁氧体的 SAR:静态磁滞回线面积、动态磁滞回线面积和水溶液的热现象。对于动态回线和测温测量,开发了特定的实验装置,它们在可比频率(分别约为 69kHz 和约 100kHz)和射频磁场峰值(高达 100mT)下运行。热现象装置已完全建模,通过在非绝热条件下考虑与周围环境的热交换以及由于离子电流而导致的水的寄生加热,提供了对磁性纳米粒子 SAR 的直接测量。
结果:动态磁滞回线被证明可以准确地确定 SAR,除非对于超顺磁样品,在动态条件下可能会越过被阻塞的状态边界。静态磁滞回线始终低估比吸收率,但可用于选择最有前途的样品。
结论:提出了一种通过不同的热疗方法可靠地测量磁性纳米粒子 SAR 的方法,并通过比较不同的方法讨论了其有效性。
一般意义:这项工作属于医学计量可追溯性的一般主题,特别关注磁热疗。本文是题为“生物纳米材料的最新进展”特刊的一部分,客座编辑:Marie-Louise Saboungi 博士和 Samuel D. Bader 博士。
Biochim Biophys Acta Gen Subj. 2016-12-14
Biochim Biophys Acta Gen Subj. 2017-2-24
Int J Nanomedicine. 2017-8-28
J Colloid Interface Sci. 2019-4-30
Dalton Trans. 2013-4-14
Materials (Basel). 2022-4-28
Nanomaterials (Basel). 2021-8-25
Sensors (Basel). 2020-4-10
Beilstein J Nanotechnol. 2019-6-24