文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

蛋白酶介导的多层磁-钆纳米结构的对比增强用于成像和磁热疗。

Protease-Mediated Contrast Enhancement of Multilayered Magneto-Gadolinium Nanostructures for Imaging and Magnetic Hyperthermia.

机构信息

Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy.

出版信息

ACS Appl Mater Interfaces. 2024 Feb 14;16(6):6743-6755. doi: 10.1021/acsami.3c13914. Epub 2024 Jan 31.


DOI:10.1021/acsami.3c13914
PMID:38295315
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10875642/
Abstract

In this work, we constructed a multifunctional composite nanostructure for combined magnetic hyperthermia therapy and magnetic resonance imaging based on and signals. First, iron oxide nanocubes with a benchmark heating efficiency for magnetic hyperthermia were assembled within an amphiphilic polymer to form magnetic nanobeads. Next, poly(acrylic acid)-coated inorganic sodium gadolinium fluoride nanoparticles were electrostatically loaded onto the magnetic nanobead surface via a layer-by-layer approach by employing a positively charged enzymatic-cleavable biopolymer. The positive-negative multilayering process was validated through the changes occurring in surface ζ-potential values and structural characterization by transmission electron microscopy (TEM) imaging. These nanostructures exhibit an efficient heating profile, in terms of the specific absorption rates under clinically accepted magnetic field conditions. The addition of protease enzyme mediates the degradation of the surface layers of the nanostructures with the detachment of gadolinium nanoparticles from the magnetic beads and exposure to the aqueous environment. Such a process is associated with changes in the relaxation time and contrast and a parallel decrease in the signal. These structures are also nontoxic when tested on glioblastoma tumor cells up to a maximum gadolinium dose of 125 μg mL, which also corresponds to a iron dose of 52 μg mL. Nontoxic nanostructures with such enzyme-triggered release mechanisms and signal enhancement are desirable for tracking tumor microenvironment release with remote -guidance and magnetic hyperthermia therapy actuation to be done at the diseased site upon verification of magnetic resonance imaging (MRI)-guided release.

摘要

在这项工作中,我们构建了一种基于 和 信号的多功能复合纳米结构,用于联合磁热疗和磁共振成像。首先,将具有基准磁热疗加热效率的氧化铁纳米立方体组装在两亲聚合物中,形成磁性纳米珠。然后,通过采用带正电荷的酶可裂解的生物聚合物,通过层层静电加载的方法将聚(丙烯酸)包覆的无机氟化钠钆纳米粒子负载到磁性纳米珠表面上。通过表面 ζ 电位值的变化和通过透射电子显微镜 (TEM) 成像进行的结构表征验证了正-负多层过程。这些纳米结构在临床可接受的磁场条件下表现出高效的加热特性,具体表现在比吸收率上。蛋白酶的添加介导了纳米结构表面层的降解,使钆纳米粒子从磁珠上脱离并暴露于水相环境中。这种过程与 弛豫时间和对比的变化以及 信号的平行下降有关。在最高达 125 μg mL 的镓剂量(相当于 52 μg mL 的铁剂量)下,在神经胶质瘤肿瘤细胞上进行测试时,这些结构也没有毒性。具有这种酶触发释放机制和 信号增强的无毒纳米结构,可用于在验证磁共振成像 (MRI) 引导释放后,通过远程引导进行肿瘤微环境释放的跟踪,并在患病部位进行磁热疗治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/c40f62ca9483/am3c13914_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/630240feeffb/am3c13914_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/e3e0f9334f83/am3c13914_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/9eebab51f6f7/am3c13914_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/8d49285ff40a/am3c13914_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/c19e5fa5ffa6/am3c13914_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/c40f62ca9483/am3c13914_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/630240feeffb/am3c13914_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/e3e0f9334f83/am3c13914_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/9eebab51f6f7/am3c13914_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/8d49285ff40a/am3c13914_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/c19e5fa5ffa6/am3c13914_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/10875642/c40f62ca9483/am3c13914_0006.jpg

相似文献

[1]
Protease-Mediated Contrast Enhancement of Multilayered Magneto-Gadolinium Nanostructures for Imaging and Magnetic Hyperthermia.

ACS Appl Mater Interfaces. 2024-2-14

[2]
Magnetic Heating Stimulated Cargo Release with Dose Control using Multifunctional MR and Thermosensitive Liposome.

Nanotheranostics. 2019-4-19

[3]
Interfacial engineered gadolinium oxide nanoparticles for magnetic resonance imaging guided microenvironment-mediated synergetic chemodynamic/photothermal therapy.

Biomaterials. 2019-7-27

[4]
Holmium (III)-doped multifunctional nanotheranostic agent for ultra-high-field magnetic resonance imaging-guided chemo-photothermal tumor therapy.

Acta Biomater. 2023-12

[5]
Stimuli-responsive poly(N-isopropyl acrylamide)-co-tyrosine@gadolinium: Iron oxide nanoparticle-based nanotheranostic for cancer diagnosis and treatment.

Colloids Surf B Biointerfaces. 2016-2-27

[6]
Magnetic vortex nanoring coated with gadolinium oxide for highly enhanced T-T dual-modality magnetic resonance imaging-guided magnetic hyperthermia cancer ablation.

Biomed Pharmacother. 2022-6

[7]
A pH-Responsive Yolk-Like Nanoplatform for Tumor Targeted Dual-Mode Magnetic Resonance Imaging and Chemotherapy.

ACS Nano. 2017-7-7

[8]
Gadolinium Magnetic Resonance Imaging

2025-1

[9]
Redox ferrocenylseleno compounds modulate longitudinal and transverse relaxation times of FNPs-Gd MRI contrast agents for multimodal imaging and photo-Fenton therapy.

Acta Biomater. 2023-7-1

[10]
Iron Oxide Nanoparticles as T Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives.

Adv Mater. 2021-6

引用本文的文献

[1]
Magnetic nanosheets: from iron oxide nanocubes to polydopamine embedded 2D clusters and their multi-purpose properties.

Nanoscale Horiz. 2025-4-7

[2]
Recent advances in spatio-temporally controllable systems for management of glioma.

Asian J Pharm Sci. 2024-10

[3]
Magnetic Hyperthermia in Glioblastoma Multiforme Treatment.

Int J Mol Sci. 2024-9-19

本文引用的文献

[1]
Clickable Polymer Ligand-Functionalized Iron Oxide Nanocubes: A Promising Nanoplatform for 'Local Hot Spots' Magnetically Triggered Drug Release.

ACS Appl Mater Interfaces. 2022-11-2

[2]
Multimodal Magnetic Resonance and Photoacoustic Imaging of Tumor-Specific Enzyme-Responsive Hybrid Nanoparticles for Oxygen Modulation.

Front Bioeng Biotechnol. 2022-7-13

[3]
Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma.

J Nanobiotechnology. 2022-6-16

[4]
Self-Confirming Magnetosomes for Tumor-Targeted T /T Dual-Mode MRI and MRI-Guided Photothermal Therapy.

Adv Healthc Mater. 2022-7

[5]
Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.

Chem Soc Rev. 2021-10-18

[6]
How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.

Nanoscale. 2021-10-1

[7]
Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-1

[8]
Core-Shell Structurized FeO@C@MnO Nanoparticles as pH Responsive T-T* Dual-Modal Contrast Agents for Tumor Diagnosis.

ACS Biomater Sci Eng. 2018-8-13

[9]
Uncovering the Magnetic Particle Imaging and Magnetic Resonance Imaging Features of Iron Oxide Nanocube Clusters.

Nanomaterials (Basel). 2020-12-29

[10]
Stimuli-Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy.

Adv Healthc Mater. 2021-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索