Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia, 16163 Genova, Italy.
ACS Appl Mater Interfaces. 2024 Feb 14;16(6):6743-6755. doi: 10.1021/acsami.3c13914. Epub 2024 Jan 31.
In this work, we constructed a multifunctional composite nanostructure for combined magnetic hyperthermia therapy and magnetic resonance imaging based on and signals. First, iron oxide nanocubes with a benchmark heating efficiency for magnetic hyperthermia were assembled within an amphiphilic polymer to form magnetic nanobeads. Next, poly(acrylic acid)-coated inorganic sodium gadolinium fluoride nanoparticles were electrostatically loaded onto the magnetic nanobead surface via a layer-by-layer approach by employing a positively charged enzymatic-cleavable biopolymer. The positive-negative multilayering process was validated through the changes occurring in surface ζ-potential values and structural characterization by transmission electron microscopy (TEM) imaging. These nanostructures exhibit an efficient heating profile, in terms of the specific absorption rates under clinically accepted magnetic field conditions. The addition of protease enzyme mediates the degradation of the surface layers of the nanostructures with the detachment of gadolinium nanoparticles from the magnetic beads and exposure to the aqueous environment. Such a process is associated with changes in the relaxation time and contrast and a parallel decrease in the signal. These structures are also nontoxic when tested on glioblastoma tumor cells up to a maximum gadolinium dose of 125 μg mL, which also corresponds to a iron dose of 52 μg mL. Nontoxic nanostructures with such enzyme-triggered release mechanisms and signal enhancement are desirable for tracking tumor microenvironment release with remote -guidance and magnetic hyperthermia therapy actuation to be done at the diseased site upon verification of magnetic resonance imaging (MRI)-guided release.
在这项工作中,我们构建了一种基于 和 信号的多功能复合纳米结构,用于联合磁热疗和磁共振成像。首先,将具有基准磁热疗加热效率的氧化铁纳米立方体组装在两亲聚合物中,形成磁性纳米珠。然后,通过采用带正电荷的酶可裂解的生物聚合物,通过层层静电加载的方法将聚(丙烯酸)包覆的无机氟化钠钆纳米粒子负载到磁性纳米珠表面上。通过表面 ζ 电位值的变化和通过透射电子显微镜 (TEM) 成像进行的结构表征验证了正-负多层过程。这些纳米结构在临床可接受的磁场条件下表现出高效的加热特性,具体表现在比吸收率上。蛋白酶的添加介导了纳米结构表面层的降解,使钆纳米粒子从磁珠上脱离并暴露于水相环境中。这种过程与 弛豫时间和对比的变化以及 信号的平行下降有关。在最高达 125 μg mL 的镓剂量(相当于 52 μg mL 的铁剂量)下,在神经胶质瘤肿瘤细胞上进行测试时,这些结构也没有毒性。具有这种酶触发释放机制和 信号增强的无毒纳米结构,可用于在验证磁共振成像 (MRI) 引导释放后,通过远程引导进行肿瘤微环境释放的跟踪,并在患病部位进行磁热疗治疗。
ACS Appl Mater Interfaces. 2024-2-14
Colloids Surf B Biointerfaces. 2016-2-27
Asian J Pharm Sci. 2024-10
Int J Mol Sci. 2024-9-19
Front Bioeng Biotechnol. 2022-7-13
J Nanobiotechnology. 2022-6-16
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-1
ACS Biomater Sci Eng. 2018-8-13
Nanomaterials (Basel). 2020-12-29