Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305-5847, USA.
Med Phys. 2017 Jul;44(7):3375-3392. doi: 10.1002/mp.12270. Epub 2017 Jun 16.
A challenging problem in trajectory optimization for radiotherapy is properly handling the synchronization of the medical accelerators dynamic delivery. The initial coarse sampling of control points implemented in a Progressive Resolution Optimization type approach (VMAT) routinely results in MLC aperture forming contention issues as the sampling resolution increases. This work presents an approach to optimize continuous, beam-on radiation trajectories through exploration of the anatomical topology present in the patient and formation of a novel dual-metric graph optimization problem.
This work presents a new perspective on trajectory optimization in radiotherapy using the concept of sectioning (TORUS). TORUS avoids degradation of 3D dose optimization quality by mapping the connectedness of target regions from the BEV perspective throughout the space of deliverable coordinates. This connectedness information is then incorporated into a graph optimization problem to define ideal trajectories. The unique usage of two distance functions in this graph optimization permits the TORUS algorithm to generate efficient dynamic trajectories for delivery while maximizing the angular flux through all PTV voxels. 3D dose optimization is performed for trajectories using a commercial TPS progressive resolution optimizer.
The TORUS algorithm is applied to three example treatments: chest wall, scalp, and the TG-119 C-shape phantom. When static collimator coplanar trajectories are generated for the chest wall and scalp cases, the TORUS trajectories are found to outperform both 7 field IMRT and 2 arc VMAT plans in delivery time, organ at risk sparing, conformality, and homogeneity. For the TG-119 phantom, when static couch and collimator non-coplanar trajectories are optimized, TORUS trajectories have superior sparing of the central core avoidance with shorter delivery times, with similar dose conformality and homogeneity.
The TORUS algorithm is able to automatically generate trajectories having improved plan quality and delivery time over standard IMRT and VMAT treatments. TORUS offers an exciting and promising avenue forward toward increasing dynamic capabilities in radiation delivery.
在放射治疗的轨迹优化中,一个具有挑战性的问题是正确处理医学加速器动态输送的同步。在渐进分辨率优化类型的方法(VMAT)中,控制关键点的初始粗采样通常会导致在采样分辨率增加时 MLC 孔径形成竞争问题。本工作提出了一种通过探索患者体内解剖拓扑结构来优化连续、射束开启辐射轨迹的方法,并形成了一种新的双度量图优化问题。
本工作提出了一种新的放射治疗轨迹优化方法,使用截面(TORUS)的概念。TORUS 通过从 BEV 角度映射目标区域的连通性,避免了 3D 剂量优化质量的退化,贯穿可交付坐标空间。然后,将此连通性信息纳入图优化问题中,以定义理想轨迹。在该图优化中,两个距离函数的独特使用允许 TORUS 算法在最大程度地增加所有 PTV 体素的角通量的同时,生成有效的动态输送轨迹。使用商业 TPS 渐进分辨率优化器对轨迹进行 3D 剂量优化。
将 TORUS 算法应用于三个示例治疗:胸壁、头皮和 TG-119 C 形体模。当为胸壁和头皮病例生成静态准直器共面轨迹时,发现 TORUS 轨迹在输送时间、器官风险保护、适形性和均匀性方面优于 7 野 IMRT 和 2 弧 VMAT 计划。对于 TG-119 体模,当优化静态床和准直器非共面轨迹时,TORUS 轨迹具有更好的中央核心避让保护,具有更短的输送时间,并且具有相似的剂量适形性和均匀性。
TORUS 算法能够自动生成具有改进的计划质量和输送时间的轨迹,优于标准的 IMRT 和 VMAT 治疗。TORUS 为提高辐射输送的动态能力提供了一个令人兴奋和有前途的途径。