Suppr超能文献

基于经典德鲁德振子的DNA极化力场:I. 使用量子力学碱基堆积和构象能量学进行优化

Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics.

作者信息

Lemkul Justin A, MacKerell Alexander D

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States.

出版信息

J Chem Theory Comput. 2017 May 9;13(5):2053-2071. doi: 10.1021/acs.jctc.7b00067. Epub 2017 Apr 19.

Abstract

Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.

摘要

经验力场试图利用经典物理学,而非对大系统计算上难以处理的更昂贵的量子力学计算,将一组原子的构型与其能量联系起来,从而得出支配其动力学的力。用于模拟生物分子系统的大多数力场使用固定的原子部分电荷,忽略电子极化的影响,而是采用可能无法在不同环境中转移的平均场近似。最近的硬件和软件开发使可极化模拟变得可行,为此,可极化力场代表了下一代分子动力学模拟技术。在这项工作中,我们通过针对构建完整DNA力场所需的模型化合物的量子力学相互作用能和构象能分布,描述了基于经典德鲁德振子模型的DNA可极化力场的优化。本工作中采用的参数化策略旨在纠正A-DNA和B-DNA中弱的碱基堆积以及在之前版本的力场(称为Drude-2013)中观察到的Z-DNA解旋。对碱基非键合项的优化以及对糖苷键、脱氧核糖呋喃糖环和重要主链扭转中二面角项的重新参数化,使得与量子力学势能面的一致性得到了改善。值得注意的是,我们通过在优化中明确纳入Z-DNA构象能量学,扩展了之前的工作。

相似文献

引用本文的文献

4
Refinement of the Sugar Puckering Torsion Potential in the AMBER DNA Force Field.AMBER DNA力场中糖环构象扭转势能的优化
J Chem Theory Comput. 2025 Jan 28;21(2):833-846. doi: 10.1021/acs.jctc.4c01100. Epub 2025 Jan 2.
6
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.CHARMM 45:可访问性、功能和速度的增强。
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.

本文引用的文献

2
How accurate are accurate force-fields for B-DNA?用于B型DNA的精确力场有多精确?
Nucleic Acids Res. 2017 Apr 20;45(7):4217-4230. doi: 10.1093/nar/gkw1355.
9
Parmbsc1: a refined force field for DNA simulations.Parmbsc1:用于DNA模拟的精细力场。
Nat Methods. 2016 Jan;13(1):55-8. doi: 10.1038/nmeth.3658. Epub 2015 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验