Polêto Marcelo D, Lemkul Justin A
Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States.
Macromolecules. 2024 Nov 8;58(1):403-414. doi: 10.1021/acs.macromol.4c02109. eCollection 2025 Jan 14.
The environmental and economic challenges posed by the widespread use and disposal of plastics, particularly poly(ethylene terephthalate) (PET), require innovative solutions to mitigate their impact. Such mitigation begins with understanding physical properties of the polymer that could enable new recycling technologies. Although molecular simulations have provided valuable insights into PET interactions with various PET hydrolases, current nonpolarizable force fields neglect the electronic polarization effects inherent to PET interactions. Here, we present parameters for PET polymer and its derivatives that are compatible with the Drude polarizable force field. Our parameter fitting protocol accurately reproduces electrostatic properties from quantum mechanical calculations. We then studied electronic properties of PET amorphous slabs and PET crystal units, revealing a crucial electronic polarization response of PET residues at the interface with water or vacuum, yielding insights into the modulation of electrostatic properties by solvent molecules. Finally, we showcase the interaction between a carbohydrate-binding protein and the PET crystal unit, revealing the role of electronic polarization in enhancing binding affinity. This study represents the first extension of the Drude polarizable force field to a synthetic polymer, offering a robust tool for exploring PET material properties and advancing the design of efficient (bio)technologies for addressing plastic pollution.
塑料尤其是聚对苯二甲酸乙二酯(PET)的广泛使用和处置所带来的环境和经济挑战,需要创新的解决方案来减轻其影响。这种减轻影响的工作始于了解聚合物的物理性质,这些性质可以促成新的回收技术。尽管分子模拟已经为PET与各种PET水解酶的相互作用提供了有价值的见解,但目前的非极化力场忽略了PET相互作用中固有的电子极化效应。在此,我们提出了与德鲁德极化力场兼容的PET聚合物及其衍生物的参数。我们的参数拟合协议准确地再现了量子力学计算中的静电性质。然后,我们研究了PET非晶平板和PET晶体单元的电子性质,揭示了PET残基在与水或真空界面处的关键电子极化响应,从而深入了解了溶剂分子对静电性质的调制。最后,我们展示了一种碳水化合物结合蛋白与PET晶体单元之间的相互作用,揭示了电子极化在增强结合亲和力中的作用。这项研究代表了德鲁德极化力场首次扩展到合成聚合物,为探索PET材料性质和推进解决塑料污染的高效(生物)技术设计提供了一个强大的工具。