Roy Rahul, Bassham Diane C
Department of Genetics, Development and Cell Biology, 1035B Roy J Carver Co-Lab, 1111 WOI Rd, Iowa State University, Ames, IA, 50011, USA.
Interdepartmental Genetics Program, Iowa State University, Ames, IA, USA.
BMC Plant Biol. 2017 Apr 11;17(1):73. doi: 10.1186/s12870-017-1024-4.
The movement of plant roots within the soil is key to their ability to interact with the environment and maximize anchorage and nutrient acquisition. Directional growth of roots occurs by a combination of sensing external cues, hormonal signaling and cytoskeletal changes in the root cells. Roots growing on slanted, impenetrable growth medium display a characteristic waving and skewing, and mutants with deviations in these phenotypes assist in identifying genes required for root movement. Our study identifies a role for a trans-Golgi network-localized protein in root skewing.
We found that Arabidopsis thaliana TNO1 (TGN-localized SYP41-interacting protein), a putative tethering factor localized at the trans-Golgi network, affects root skewing. tno1 knockout mutants display enhanced root skewing and epidermal cell file rotation. Skewing of tno1 roots increases upon microtubule stabilization, but is insensitive to microtubule destabilization. Microtubule destabilization leads to severe defects in cell morphology in tno1 seedlings. Microtubule array orientation is unaffected in the mutant roots, suggesting that the increase in cell file rotation is independent of the orientation of microtubule arrays.
We conclude that TNO1 modulates root skewing in a mechanism that is dependent on microtubules but is not linked to disruption of the orientation of microtubule arrays. In addition, TNO1 is required for maintenance of cell morphology in mature regions of roots and the base of hypocotyls. The TGN-localized SNARE machinery might therefore be important for appropriate epidermal cell file rotation and cell expansion during root growth.
植物根在土壤中的移动对于其与环境相互作用并最大化固着和养分获取能力至关重要。根的定向生长是通过感知外部线索、激素信号传导以及根细胞中细胞骨架变化共同作用实现的。在倾斜的、不可穿透的生长培养基上生长的根表现出特征性的波浪状和扭曲状,而在这些表型上出现偏差的突变体有助于鉴定根移动所需的基因。我们的研究确定了一种位于反式高尔基体网络的蛋白质在根扭曲中的作用。
我们发现拟南芥TNO1(定位在反式高尔基体网络的与SYP41相互作用的蛋白质),一种假定的拴系因子,影响根的扭曲。tno1基因敲除突变体表现出增强的根扭曲和表皮细胞列旋转。tno1根的扭曲在微管稳定时增加,但对微管去稳定不敏感。微管去稳定导致tno1幼苗细胞形态出现严重缺陷。突变根中的微管阵列方向不受影响,这表明细胞列旋转的增加与微管阵列的方向无关。
我们得出结论,TNO1以一种依赖于微管但与微管阵列方向破坏无关的机制调节根的扭曲。此外,TNO1是维持根成熟区域和下胚轴基部细胞形态所必需的。因此,定位在反式高尔基体网络的SNARE机制可能对根生长过程中适当的表皮细胞列旋转和细胞扩展很重要。