EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS UMR 8502, F-91405 Orsay, France.
Nat Commun. 2017 Apr 12;8:14999. doi: 10.1038/ncomms14999.
Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations' symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations' symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria.
等离子体学是研究光与金属物体相互作用的科学和技术,它正在从根本上改变我们检测、产生和操纵光的方式。尽管由于纳米级制造和分析方法的可用性,该领域正在迅速发展,但等离子体激发的对称性等基本性质却无法直接获得,从而导致对其性质的理解不完整,有时甚至是错误的。在这里,我们通过故意将电子束的波函数塑造成与修改后的透射电子显微镜中的等离子体激发的对称性相匹配,克服了这一限制。我们通过实验和理论证明,这种方法可以选择性地检测金属纳米粒子中的特定等离子体模式,同时排除具有其他对称性的模式。这种方法类似于广泛使用偏振光选择性激发等离子体模式,其优点是可以局部探测单个等离子体物体的响应,并且具有更广泛的对称性选择标准。