Suppr超能文献

由小散射体介导的自由电子与表面极化激元的耦合。

Free-electron coupling to surface polaritons mediated by small scatterers.

作者信息

Prelat Leila, Dias Eduardo J C, García de Abajo F Javier

机构信息

ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.

ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010, Castelldefels, Barcelona, Spain.

出版信息

Nanophotonics. 2024 Oct 4;13(25):4667-4681. doi: 10.1515/nanoph-2024-0326. eCollection 2024 Dec.

Abstract

The ability of surface polaritons (SPs) to enhance and manipulate light fields down to deep-subwavelength length scales enables applications in optical sensing and nonlinear optics at the nanoscale. However, the wavelength mismatch between light and SPs prevents direct optical excitation of surface-bound modes, thereby limiting the widespread development of SP-based photonics. Free electrons are a natural choice to directly excite strongly confined SPs because they can supply field components of high momentum at designated positions with subnanometer precision. Here, we theoretically explore free-electron-SP coupling mediated by small scatterers and show that low-energy electrons can efficiently excite surface modes with a maximum probability reached at an optimum surface-scatterer distance. By aligning the electron beam with a periodic array of scatterers placed near a polariton-supporting interface, in-plane Smith-Purcell emission results in the excitation of surface modes along well-defined directions. Our results support using scattering elements to excite SPs with low-energy electrons.

摘要

表面极化激元(SPs)能够将光场增强并操控至深亚波长尺度,这使得其在纳米尺度的光学传感和非线性光学领域有应用前景。然而,光与SPs之间的波长失配阻碍了表面束缚模式的直接光激发,从而限制了基于SP的光子学的广泛发展。自由电子是直接激发强受限SPs的自然选择,因为它们能够以亚纳米精度在指定位置提供高动量的场分量。在此,我们从理论上探索了由小散射体介导的自由电子 - SP耦合,并表明低能电子能够高效激发表面模式,在最佳表面 - 散射体距离处达到最大概率。通过将电子束与置于极化激元支持界面附近的散射体周期性阵列对齐,面内史密斯 - 珀塞尔发射导致沿明确方向的表面模式激发。我们的结果支持使用散射元件以低能电子激发SPs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e68/11620329/3ff8beda2519/j_nanoph-2024-0326_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验