Department of Quantum Science, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia.
Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, Bilbao, 48080, Spain.
Sci Rep. 2017 Apr 12;7:46197. doi: 10.1038/srep46197.
Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10 in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period.
大规模数字量子模拟需要数千个基本纠缠门来构建模拟动力学。尽管在各种小规模模拟中取得了成功,但量子信息处理平台迄今未能展示出精确控制和可扩展性的结合,以系统地超越经典模拟器。我们分析了快速门如何使囚禁离子量子处理器实现所需的可扩展性,从而在不进行纠错的情况下超越经典计算机。我们分析了一个大规模数字模拟器的性能,发现对于处于实际加热和退相位速率下的陷阱,在π脉冲失真是 10 以内时,可实现约 70%的保真度。这种可扩展性依赖于快速门:纠缠门的速度要快于陷阱周期。