Suppr超能文献

离子阱大规模量子模拟的快速门研究

A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions.

机构信息

Department of Quantum Science, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia.

Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, Bilbao, 48080, Spain.

出版信息

Sci Rep. 2017 Apr 12;7:46197. doi: 10.1038/srep46197.

Abstract

Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10 in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period.

摘要

大规模数字量子模拟需要数千个基本纠缠门来构建模拟动力学。尽管在各种小规模模拟中取得了成功,但量子信息处理平台迄今未能展示出精确控制和可扩展性的结合,以系统地超越经典模拟器。我们分析了快速门如何使囚禁离子量子处理器实现所需的可扩展性,从而在不进行纠错的情况下超越经典计算机。我们分析了一个大规模数字模拟器的性能,发现对于处于实际加热和退相位速率下的陷阱,在π脉冲失真是 10 以内时,可实现约 70%的保真度。这种可扩展性依赖于快速门:纠缠门的速度要快于陷阱周期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f54/5388870/04361c80a350/srep46197-f1.jpg

相似文献

1
A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions.
Sci Rep. 2017 Apr 12;7:46197. doi: 10.1038/srep46197.
2
Scaling the ion trap quantum processor.
Science. 2013 Mar 8;339(6124):1164-9. doi: 10.1126/science.1231298.
3
Submicrosecond entangling gate between trapped ions via Rydberg interaction.
Nature. 2020 Apr;580(7803):345-349. doi: 10.1038/s41586-020-2152-9. Epub 2020 Apr 15.
4
Scaling Trapped Ion Quantum Computers Using Fast Gates and Microtraps.
Phys Rev Lett. 2018 Jun 1;120(22):220501. doi: 10.1103/PhysRevLett.120.220501.
5
High-fidelity parallel entangling gates on a neutral-atom quantum computer.
Nature. 2023 Oct;622(7982):268-272. doi: 10.1038/s41586-023-06481-y. Epub 2023 Oct 11.
6
Trapped-ion quantum logic gates based on oscillating magnetic fields.
Phys Rev Lett. 2008 Aug 29;101(9):090502. doi: 10.1103/PhysRevLett.101.090502.
7
Robust Entanglement Gates for Trapped-Ion Qubits.
Phys Rev Lett. 2018 Nov 2;121(18):180502. doi: 10.1103/PhysRevLett.121.180502.
8
Fast quantum logic gates with trapped-ion qubits.
Nature. 2018 Feb 28;555(7694):75-78. doi: 10.1038/nature25737.
9
Resilient Entangling Gates for Trapped Ions.
Phys Rev Lett. 2018 Nov 2;121(18):180501. doi: 10.1103/PhysRevLett.121.180501.
10
Universal digital quantum simulation with trapped ions.
Science. 2011 Oct 7;334(6052):57-61. doi: 10.1126/science.1208001. Epub 2011 Sep 1.

本文引用的文献

1
Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions.
J Res Natl Inst Stand Technol. 1998 May-Jun;103(3):259-328. doi: 10.6028/jres.103.019. Epub 1998 Jun 1.
2
High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits.
Phys Rev Lett. 2016 Aug 5;117(6):060505. doi: 10.1103/PhysRevLett.117.060505. Epub 2016 Aug 4.
4
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.
Nature. 2016 Jun 23;534(7608):516-9. doi: 10.1038/nature18318.
5
Digitized adiabatic quantum computing with a superconducting circuit.
Nature. 2016 Jun 9;534(7606):222-6. doi: 10.1038/nature17658.
6
Resolved-Sideband Laser Cooling in a Penning Trap.
Phys Rev Lett. 2016 Apr 8;116(14):143002. doi: 10.1103/PhysRevLett.116.143002. Epub 2016 Apr 6.
7
Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry.
Phys Rev Lett. 2015 Nov 20;115(21):213001. doi: 10.1103/PhysRevLett.115.213001. Epub 2015 Nov 16.
8
Digital quantum simulation of fermionic models with a superconducting circuit.
Nat Commun. 2015 Jul 8;6:7654. doi: 10.1038/ncomms8654.
9
High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit.
Phys Rev Lett. 2014 Nov 28;113(22):220501. doi: 10.1103/PhysRevLett.113.220501. Epub 2014 Nov 24.
10
Ultrafast spin-motion entanglement and interferometry with a single atom.
Phys Rev Lett. 2013 May 17;110(20):203001. doi: 10.1103/PhysRevLett.110.203001. Epub 2013 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验