Suppr超能文献

使用快速门和微阱扩展囚禁离子量子计算机。

Scaling Trapped Ion Quantum Computers Using Fast Gates and Microtraps.

机构信息

Department of Quantum Science, RSPE, Australian National University, Canberra, Australian Capital Territory 2601, Australia.

Centre for Quantum Dynamics, Griffith University, Gold Coast, Queensland 4222, Australia.

出版信息

Phys Rev Lett. 2018 Jun 1;120(22):220501. doi: 10.1103/PhysRevLett.120.220501.

Abstract

Most attempts to produce a scalable quantum information processing platform based on ion traps have focused on the shuttling of ions in segmented traps. We show that an architecture based on an array of microtraps with fast gates will outperform architectures based on ion shuttling. This system requires higher power lasers but does not require the manipulation of potentials or shuttling of ions. This improves optical access, reduces the complexity of the trap, and reduces the number of conductive surfaces close to the ions. The use of fast gates also removes limitations on the gate time. Error rates of 10^{-5} are shown to be possible with 250 mW laser power and a trap separation of 100  μm. The performance of the gates is shown to be robust to the limitations in the laser repetition rate and the presence of many ions in the trap array.

摘要

大多数基于离子阱的可扩展量子信息处理平台的尝试都集中在分段阱中离子的穿梭上。我们表明,基于具有快速门的微阱阵列的架构将优于基于离子穿梭的架构。该系统需要更高功率的激光器,但不需要操纵势或离子穿梭。这提高了光学访问,减少了陷阱的复杂性,并减少了靠近离子的导电表面的数量。快速门的使用还消除了门时间的限制。使用 250 mW 激光功率和 100 μm 的阱间距,可以达到 10^{-5}的错误率。结果表明,门的性能对激光重复率的限制以及阱阵列中有多个离子的存在具有鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验