Gilson Amy I, Marshall-Christensen Ahmee, Choi Jeong-Mo, Shakhnovich Eugene I
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
Biophys J. 2017 Apr 11;112(7):1350-1365. doi: 10.1016/j.bpj.2017.02.029.
Homology modeling is a powerful tool for predicting a protein's structure. This approach is successful because proteins whose sequences are only 30% identical still adopt the same structure, while structure similarity rapidly deteriorates beyond the 30% threshold. By studying the divergence of protein structure as sequence evolves in real proteins and in evolutionary simulations, we show that this nonlinear sequence-structure relationship emerges as a result of selection for protein folding stability in divergent evolution. Fitness constraints prevent the emergence of unstable protein evolutionary intermediates, thereby enforcing evolutionary paths that preserve protein structure despite broad sequence divergence. However, on longer timescales, evolution is punctuated by rare events where the fitness barriers obstructing structure evolution are overcome and discovery of new structures occurs. We outline biophysical and evolutionary rationale for broad variation in protein family sizes, prevalence of compact structures among ancient proteins, and more rapid structure evolution of proteins with lower packing density.
同源建模是预测蛋白质结构的一种强大工具。这种方法之所以成功,是因为序列只有30%相同的蛋白质仍然采用相同的结构,而超过30%的阈值后,结构相似性会迅速下降。通过研究真实蛋白质和进化模拟中随着序列进化蛋白质结构的差异,我们表明这种非线性序列-结构关系是在分歧进化中对蛋白质折叠稳定性进行选择的结果。适应性限制阻止了不稳定蛋白质进化中间体的出现,从而迫使进化路径在序列广泛分歧的情况下仍能保持蛋白质结构。然而,在更长的时间尺度上,进化会被罕见事件打断,在这些事件中,阻碍结构进化的适应性障碍被克服,新结构得以发现。我们概述了蛋白质家族大小广泛变化、古老蛋白质中致密结构普遍存在以及堆积密度较低的蛋白质结构进化更快的生物物理和进化原理。