Erdoğan Ayşe Nisan, Dasmeh Pouria, Socha Raymond D, Chen John Z, Life Benjamin E, Jun Rachel, Kiritchkov Linda, Kehila Dan, Serohijos Adrian W R, Tokuriki Nobuhiko
Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
Département de biochimie, Université de Montréal, 2900 Edouard-Montpetit, Montreal, Quebec, H3T 1J4, Canada.
Nat Commun. 2024 Dec 30;15(1):10813. doi: 10.1038/s41467-024-55012-4.
Heritable phenotypic variation plays a central role in evolution by conferring rapid adaptive capacity to populations. Mechanisms that can explain genetic diversity by describing connections between genotype and organismal fitness have been described. However, the difficulty of acquiring comprehensive data on genotype-phenotype-environment relationships has hindered the efforts to explain how the ubiquitously observed phenotypic variation in populations emerges and is maintained. To address this challenge, we establish an experimental system where we can examine the genotype-phenotype relationships in a controlled environment. We perform long-term experimental evolution on VIM-2 β-lactamase, an antibiotic-resistance enzyme, to explore the conditions that promote the emergence and maintenance of phenotypic variation. We found that evolution in a static environment with low antibiotic concentrations can promote and maintain significant phenotypic variation within populations. Notably, evolution of VIM-2 under selection with a low antibiotic concentration led to variants that conferred resistance to over 100-fold higher antibiotic concentrations than used in selection. A model based on the previously described threshold-like relationship between enzyme phenotype and fitness generated using VIM-2's all single amino acid variants, sufficiently explains the emergence of standing phenotypic variation under static environmental conditions. Overall, our approach provides a tractable model for studying phenotypic variation and evolvability at the population level.
可遗传的表型变异通过赋予种群快速适应能力在进化中发挥核心作用。已经描述了通过描述基因型与生物体适应性之间的联系来解释遗传多样性的机制。然而,获取关于基因型 - 表型 - 环境关系的全面数据的困难阻碍了我们解释种群中普遍观察到的表型变异如何出现和维持的努力。为了应对这一挑战,我们建立了一个实验系统,在该系统中我们可以在可控环境中研究基因型 - 表型关系。我们对一种抗生素抗性酶VIM - 2β - 内酰胺酶进行长期实验进化,以探索促进表型变异出现和维持的条件。我们发现,在低抗生素浓度的静态环境中进化可以促进和维持种群内显著的表型变异。值得注意的是,在低抗生素浓度选择下VIM - 2的进化导致了一些变体,这些变体对超过选择所用抗生素浓度100倍以上的抗生素具有抗性。基于使用VIM - 2的所有单氨基酸变体生成的酶表型与适应性之间先前描述的阈值样关系建立的模型,充分解释了静态环境条件下稳定表型变异的出现。总体而言,我们的方法为在种群水平上研究表型变异和进化能力提供了一个易于处理的模型。