Chaturvedi Sumit K, Zhao Huaying, Schuck Peter
Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland.
Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland.
Biophys J. 2017 Apr 11;112(7):1374-1382. doi: 10.1016/j.bpj.2017.02.020.
Sedimentation velocity analytical ultracentrifugation with fluorescence detection has emerged as a powerful method for the study of interacting systems of macromolecules. It combines picomolar sensitivity with high hydrodynamic resolution, and can be carried out with photoswitchable fluorophores for multicomponent discrimination, to determine the stoichiometry, affinity, and shape of macromolecular complexes with dissociation equilibrium constants from picomolar to micromolar. A popular approach for data interpretation is the determination of the binding affinity by isotherms of weight-average sedimentation coefficients s. A prevailing dogma in sedimentation analysis is that the weight-average sedimentation coefficient from the transport method corresponds to the signal- and population-weighted average of all species. We show that this does not always hold true for systems that exhibit significant signal changes with complex formation-properties that may be readily encountered in practice, e.g., from a change in fluorescence quantum yield. Coupled transport in the reaction boundary of rapidly reversible systems can make significant contributions to the observed migration in a way that cannot be accounted for in the standard population-based average. Effective particle theory provides a simple physical picture for the reaction-coupled migration process. On this basis, we develop a more general binding model that converges to the well-known form of s with constant signals, but can account simultaneously for hydrodynamic cotransport in the presence of changes in fluorescence quantum yield. We believe this will be useful when studying interacting systems exhibiting fluorescence quenching, enhancement, or Förster resonance energy transfer with transport methods.
具有荧光检测功能的沉降速度分析型超速离心法已成为研究大分子相互作用系统的一种强大方法。它将皮摩尔灵敏度与高流体动力学分辨率相结合,并且可以使用可光开关荧光团进行多组分鉴别,以确定大分子复合物的化学计量、亲和力和形状,其解离平衡常数范围从皮摩尔到微摩尔。一种常用的数据解释方法是通过重均沉降系数s的等温线来确定结合亲和力。沉降分析中一个普遍的观点是,来自迁移法的重均沉降系数对应于所有物种的信号加权和群体加权平均值。我们表明,对于那些在实际中可能容易遇到的、随着复合物形成而表现出显著信号变化的系统(例如荧光量子产率的变化),情况并非总是如此。快速可逆系统反应边界中的耦合迁移可以对观察到的迁移做出重大贡献,而这种贡献无法用基于标准群体的平均值来解释。有效粒子理论为反应耦合迁移过程提供了一个简单的物理图像。在此基础上,我们开发了一个更通用的结合模型,该模型在信号恒定时收敛到众所周知的s形式,但可以同时解释在荧光量子产率变化情况下的流体动力学共迁移。我们相信,在使用迁移方法研究表现出荧光猝灭、增强或Förster共振能量转移的相互作用系统时,这将是有用的。