Chaton Catherine T, Herr Andrew B
Graduate Program in Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
Methods Enzymol. 2015;562:187-204. doi: 10.1016/bs.mie.2015.04.004. Epub 2015 Jun 19.
Sedimentation velocity analytical ultracentrifugation (SV-AUC) has seen a resurgence in popularity as a technique for characterizing macromolecules and complexes in solution. SV-AUC is a particularly powerful tool for studying protein conformation, complex stoichiometry, and interacting systems in general. Deconvoluting velocity data to determine a sedimentation coefficient distribution c(s) allows for the study of either individual proteins or multicomponent mixtures. The standard c(s) approach estimates molar masses of the sedimenting species based on determination of the frictional ratio (f/f0) from boundary shapes. The frictional ratio in this case is a weight-averaged parameter, which can lead to distortion of mass estimates and loss of information when attempting to analyze mixtures of macromolecules with different shapes. A two-dimensional extension of the c(s) analysis approach provides size-and-shape distributions that describe the data in terms of a sedimentation coefficient and frictional ratio grid. This allows for better resolution of species with very distinct shapes that may co-sediment and provides better molar mass determinations for multicomponent mixtures. An example case is illustrated using globular and nonglobular proteins of different masses with nearly identical sedimentation coefficients that could only be resolved using the size-and-shape distribution. Other applications of this analytical approach to complex biological systems are presented, focusing on proteins involved in the innate immune response to cytosolic microbial DNA.
沉降速度分析超离心法(SV-AUC)作为一种表征溶液中大分子和复合物的技术,再度受到欢迎。SV-AUC是研究蛋白质构象、复合物化学计量以及一般相互作用系统的一种特别强大的工具。对速度数据进行反褶积以确定沉降系数分布c(s),可以研究单个蛋白质或多组分混合物。标准的c(s)方法基于从边界形状确定摩擦比(f/f0)来估计沉降物种的摩尔质量。在这种情况下,摩擦比是一个重量平均参数,当试图分析具有不同形状的大分子混合物时,这可能导致质量估计的失真和信息丢失。c(s)分析方法的二维扩展提供了尺寸和形状分布,该分布根据沉降系数和摩擦比网格来描述数据。这使得具有非常不同形状且可能共沉降的物种能够得到更好的分辨,并为多组分混合物提供更好的摩尔质量测定。使用具有几乎相同沉降系数的不同质量的球状和非球状蛋白质举例说明,这些蛋白质只有使用尺寸和形状分布才能分辨。还介绍了这种分析方法在复杂生物系统中的其他应用,重点是参与对胞质微生物DNA的先天免疫反应的蛋白质。