Suppr超能文献

基因组编辑:一种用于人类干细胞的强大技术。

Genome editing: a robust technology for human stem cells.

作者信息

Chandrasekaran Arun Pandian, Song Minjung, Ramakrishna Suresh

机构信息

Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.

Division of Bioindustry, Department of Food Biotechnology, College of Medical and Life Science, Silla University, Seoul, Republic of Korea.

出版信息

Cell Mol Life Sci. 2017 Sep;74(18):3335-3346. doi: 10.1007/s00018-017-2522-0. Epub 2017 Apr 12.

Abstract

Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

摘要

人类多能干细胞包括诱导多能干细胞和胚胎干细胞,它们在生物学和治疗应用方面具有巨大潜力。在疾病模型中开发高效的干细胞靶向基因组改变技术是充分发挥干细胞潜力的先决条件。借助能够促进对感兴趣基因进行位点特异性修饰的合成核酸酶,可以对干细胞进行基因组编辑。基因组编辑技术的最新进展提高了用于人类疾病模型的干细胞开发的效率和速度。锌指核酸酶、转录激活样效应物核酸酶和成簇规律间隔短回文重复序列(CRISPR)/CRISPR相关系统是在特定基因座编辑DNA的强大工具。在此,我们讨论人类干细胞中使用位点特异性核酸酶进行基因组编辑的最新技术进展。

相似文献

1
Genome editing: a robust technology for human stem cells.
Cell Mol Life Sci. 2017 Sep;74(18):3335-3346. doi: 10.1007/s00018-017-2522-0. Epub 2017 Apr 12.
2
Genome Editing in Stem Cells for Disease Therapeutics.
Mol Biotechnol. 2018 Apr;60(4):329-338. doi: 10.1007/s12033-018-0072-9.
3
[CRISPR/Cas9 technology in disease research and therapy: a review].
Sheng Wu Gong Cheng Xue Bao. 2021 Apr 25;37(4):1205-1228. doi: 10.13345/j.cjb.200401.
4
Recent advances in stem cells and gene editing: Drug discovery and therapeutics.
Prog Mol Biol Transl Sci. 2021;181:231-269. doi: 10.1016/bs.pmbts.2021.01.019. Epub 2021 Feb 26.
7
Genome editing: the road of CRISPR/Cas9 from bench to clinic.
Exp Mol Med. 2016 Oct 14;48(10):e265. doi: 10.1038/emm.2016.111.
8
Genome editing in cardiovascular diseases.
Prog Mol Biol Transl Sci. 2021;181:289-308. doi: 10.1016/bs.pmbts.2021.01.021. Epub 2021 Feb 22.
9
hPSC gene editing for cardiac disease therapy.
Pflugers Arch. 2022 Nov;474(11):1123-1132. doi: 10.1007/s00424-022-02751-2. Epub 2022 Sep 27.

引用本文的文献

1
Revolutionizing medicine: recent developments and future prospects in stem-cell therapy.
Int J Surg. 2024 Dec 1;110(12):8002-8024. doi: 10.1097/JS9.0000000000002109.
2
Gene Editing in Human Pluripotent Stem Cells: Recent Advances for Clinical Therapies.
Adv Exp Med Biol. 2020;1237:17-28. doi: 10.1007/5584_2019_439.
3
Highly Efficient Genome Engineering in and Using the CRISPR/Cas9 System.
Front Microbiol. 2019 Aug 27;10:1932. doi: 10.3389/fmicb.2019.01932. eCollection 2019.
4
Two decades of embryonic stem cells: a historical overview.
Hum Reprod Open. 2019 Jan 29;2019(1):hoy024. doi: 10.1093/hropen/hoy024. eCollection 2019.

本文引用的文献

1
Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute.
Nat Biotechnol. 2016 Nov 28;35(1):17-18. doi: 10.1038/nbt.3753.
2
CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells.
Nature. 2016 Nov 17;539(7629):384-389. doi: 10.1038/nature20134. Epub 2016 Nov 7.
3
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.
Science. 2016 Aug 5;353(6299):aaf5573. doi: 10.1126/science.aaf5573. Epub 2016 Jun 2.
4
DNA-guided genome editing using the Natronobacterium gregoryi Argonaute.
Nat Biotechnol. 2016 Jul;34(7):768-73. doi: 10.1038/nbt.3547. Epub 2016 May 2.
6
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.
7
Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells.
Cell Stem Cell. 2016 Jan 7;18(1):73-78. doi: 10.1016/j.stem.2015.09.015. Epub 2015 Oct 22.
8
Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors.
Nat Biotechnol. 2015 Dec;33(12):1256-1263. doi: 10.1038/nbt.3408. Epub 2015 Nov 9.
9
Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs.
Cell Rep. 2015 Sep 1;12(9):1385-90. doi: 10.1016/j.celrep.2015.07.062. Epub 2015 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验