Physical Chemistry Department, Fritz Haber Institute of Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
Moscow Technological University MIREA, Vernadsky Ave. 78, 119454 Moscow, Russia.
Nat Commun. 2017 Apr 13;8:15007. doi: 10.1038/ncomms15007.
Spintronics had a widespread impact over the past decades due to transferring information by spin rather than electric currents. Its further development requires miniaturization and reduction of characteristic timescales of spin dynamics combining the sub-nanometre spatial and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the impulsive spin transfer torque exerted by ultrashort SC pulses on the FM open the time domain for probing non-uniform magnetization dynamics. Here we employ laser-generated ultrashort SC pulses for driving ultrafast spin dynamics in FM and analysing its transient local source. Transverse spins injected into FM excite inhomogeneous high-frequency spin dynamics up to 0.6 THz, indicating that the perturbation of the FM magnetization is confined to 2 nm.
过去几十年来,自旋电子学通过自旋而不是电流来传输信息,因此得到了广泛的应用。为了进一步发展,它需要将自旋动力学的特征时间尺度缩小到纳秒级的空间和飞秒级的时间范围内。这些要求将研究重点转移到飞秒自旋电流 (SC) 脉冲与铁磁体 (FM) 相互作用这一基本的开放性问题上。超短 SC 脉冲施加在 FM 上的脉冲自旋转移力矩的时空特性为探测非均匀磁化动力学开辟了时域。在这里,我们采用激光产生的超短 SC 脉冲来驱动 FM 中的超快自旋动力学,并分析其瞬态局部源。注入 FM 的横向自旋激发了高达 0.6 THz 的非均匀高频自旋动力学,这表明 FM 磁化的扰动被限制在 2nm 内。