Suppr超能文献

脊椎动物大脑的自动深度表型分析。

Automated deep-phenotyping of the vertebrate brain.

作者信息

Allalou Amin, Wu Yuelong, Ghannad-Rezaie Mostafa, Eimon Peter M, Yanik Mehmet Fatih

机构信息

Massachusetts Institute of Technology, Cambridge, United States.

Uppsala University, Uppsala, Sweden.

出版信息

Elife. 2017 Apr 13;6:e23379. doi: 10.7554/eLife.23379.

Abstract

Here, we describe an automated platform suitable for large-scale deep-phenotyping of zebrafish mutant lines, which uses optical projection tomography to rapidly image brain-specific gene expression patterns in 3D at cellular resolution. Registration algorithms and correlation analysis are then used to compare 3D expression patterns, to automatically detect all statistically significant alterations in mutants, and to map them onto a brain atlas. Automated deep-phenotyping of a mutation in the master transcriptional regulator not only detects all known phenotypes but also uncovers important novel neural deficits that were overlooked in previous studies. In the telencephalon, we show for the first time that mutant zebrafish have significant patterning deficits, particularly in glutamatergic populations. Our findings reveal unexpected parallels between function in zebrafish and mice, where mutations cause deficits in glutamatergic neurons of the telencephalon-derived neocortex.

摘要

在此,我们描述了一个适用于斑马鱼突变体系大规模深度表型分析的自动化平台,该平台利用光学投影断层扫描技术,以细胞分辨率快速对大脑特定基因表达模式进行三维成像。然后使用配准算法和相关性分析来比较三维表达模式,自动检测突变体中所有具有统计学意义的变化,并将其映射到脑图谱上。对主要转录调节因子中的一个突变进行自动化深度表型分析,不仅能检测到所有已知表型,还能发现先前研究中被忽视的重要新神经缺陷。在端脑中,我们首次表明突变斑马鱼存在显著的模式缺陷,尤其是在谷氨酸能群体中。我们的研究结果揭示了斑马鱼和小鼠中功能之间意想不到的相似之处,在小鼠中,突变会导致源自端脑的新皮质谷氨酸能神经元出现缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d78/5441873/c0fceb614ee7/elife-23379-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验