Lu Yichen, Liu Xin, Hattori Ryoma, Ren Chi, Zhang Xingwang, Komiyama Takaki, Kuzum Duygu
9500 Gilman Drive, Electrical and Computer Engineering Department, Jacobs School of Engineering, University of California, San Diego, La Jolla, California 92093, USA.
9500 Gilman Drive, Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
Adv Funct Mater. 2018 Aug 1;28(31). doi: 10.1002/adfm.201800002. Epub 2018 Jun 5.
The last decades have witnessed substantial progress in optical technologies revolutionizing our ability to record and manipulate neural activity in genetically modified animal models. Meanwhile, human studies mostly rely on electrophysiological recordings of cortical potentials, which cannot be inferred from optical recordings, leading to a gap between our understanding of dynamics of microscale populations and brain-scale neural activity. By enabling concurrent integration of electrical and optical modalities, transparent graphene microelectrodes can close this gap. However, the high impedance of graphene constitutes a big challenge towards the widespread use of this technology. Here, we experimentally demonstrate that this high impedance of graphene microelectrodes is fundamentally limited by quantum capacitance. We overcome this quantum capacitance limit by creating a parallel conduction path using platinum nanoparticles. We achieve a 100 times reduction in graphene electrode impedance, while maintaining the high optical transparency crucial for deep 2-photon microscopy. Using a transgenic mouse model, we demonstrate simultaneous electrical recording of cortical activity with high fidelity while imaging calcium signals at various cortical depths right beneath the transparent microelectrodes. Multimodal analysis of Ca spikes and cortical surface potentials offers unique opportunities to bridge our understanding of cellular dynamics and brain-scale neural activity.
在过去几十年里,光学技术取得了重大进展,彻底改变了我们在转基因动物模型中记录和操纵神经活动的能力。与此同时,人体研究大多依赖于皮层电位的电生理记录,而这无法从光学记录中推断出来,导致我们对微观尺度群体动力学和脑尺度神经活动的理解存在差距。通过实现电和光两种模式的并发集成,透明石墨烯微电极可以弥合这一差距。然而,石墨烯的高阻抗对这项技术的广泛应用构成了巨大挑战。在此,我们通过实验证明,石墨烯微电极的这种高阻抗从根本上受到量子电容的限制。我们通过使用铂纳米颗粒创建一条并行传导路径来克服这一量子电容限制。我们实现了石墨烯电极阻抗降低100倍,同时保持了对深部双光子显微镜至关重要的高光学透明度。使用转基因小鼠模型,我们展示了在透明微电极正下方的不同皮层深度对钙信号进行成像的同时,能够以高保真度同步电记录皮层活动。对钙峰和皮层表面电位的多模态分析为弥合我们对细胞动力学和脑尺度神经活动的理解提供了独特机会。