Suppr超能文献

从脑机接口中的标签比例学习:具有保证的在线无监督学习。

Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees.

作者信息

Hübner David, Verhoeven Thibault, Schmid Konstantin, Müller Klaus-Robert, Tangermann Michael, Kindermans Pieter-Jan

机构信息

Brain State Decoding Lab, Cluster of Excellence BrainLinks-BrainTools, Department of Computer Science, Albert-Ludwigs-University, Freiburg, Germany.

Electronics and Information Systems, Ghent University, Ghent, Belgium.

出版信息

PLoS One. 2017 Apr 13;12(4):e0175856. doi: 10.1371/journal.pone.0175856. eCollection 2017.

Abstract

OBJECTIVE

Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means.

METHOD

We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task.

RESULTS

Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration.

SIGNIFICANCE

The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP.

摘要

目的

使用传统方法时,脑机接口(BCI)在上线使用前需要为新用户收集校准数据。校准时间可以通过例如预训练分类器的用户间转移或从零开始学习并随时间自适应的无监督自适应分类方法来减少或消除。虽然这些启发式方法在实践中效果良好,但它们都无法提供理论保证。我们的目标是修改一种事件相关电位(ERP)范式,使其与机器学习解码器协同工作,从而实现可靠的无监督免校准解码,并保证恢复真实的类别均值。

方法

我们将标签比例学习(LLP)引入BCI领域,作为一种用于基于ERP的BCI的新型无监督且易于实现的分类方法。LLP根据数据不同组中这两类的已知比例估计目标和非目标响应的均值。我们提出了一种视觉ERP拼写器以满足LLP的要求。为了进行评估,我们在人工创建的数据集上进行了模拟,并对13名执行复制拼写任务的受试者进行了在线BCI研究。

结果

理论分析表明,LLP能够保证类似于相应监督分类器那样最小化损失函数。LLP在模拟和在线应用中表现良好,在没有预先校准的情况下,平均有84.5%的字符被正确拼写。

意义

不断自适应的LLP分类器是首个有保证能找到最优解码器的用于ERP BCI的无监督解码器。这使其成为避免冗长校准过程的理想解决方案。此外,与现有的无监督方法相比,LLP基于互补原则,为与LLP结合时进一步增强这些方法打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb9d/5391120/d0db5811c120/pone.0175856.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验