Kolkhorst Henrich, Veit Joseline, Burgard Wolfram, Tangermann Michael
Brain State Decoding Lab, Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany.
Autonomous Intelligent Systems, Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany.
Front Robot AI. 2020 Mar 31;7:38. doi: 10.3389/frobt.2020.00038. eCollection 2020.
Brain signals represent a communication modality that can allow users of assistive robots to specify high-level goals, such as the object to fetch and deliver. In this paper, we consider a screen-free Brain-Computer Interface (BCI), where the robot highlights candidate objects in the environment using a laser pointer, and the user goal is decoded from the evoked responses in the electroencephalogram (EEG). Having the robot present stimuli in the environment allows for more direct commands than traditional BCIs that require the use of graphical user interfaces. Yet bypassing a screen entails less control over stimulus appearances. In realistic environments, this leads to heterogeneous brain responses for dissimilar objects-posing a challenge for reliable EEG classification. We model object instances as subclasses to train specialized classifiers in the Riemannian tangent space, each of which is regularized by incorporating data from other objects. In multiple experiments with a total of 19 healthy participants, we show that our approach not only increases classification performance but is also robust to both heterogeneous and homogeneous objects. While especially useful in the case of a screen-free BCI, our approach can naturally be applied to other experimental paradigms with potential subclass structure.
脑信号代表一种通信方式,它能让辅助机器人的用户指定高层次目标,比如获取和递送的物体。在本文中,我们考虑一种无屏幕脑机接口(BCI),其中机器人使用激光指示器在环境中突出显示候选物体,并且用户目标是从脑电图(EEG)中的诱发反应中解码出来的。让机器人在环境中呈现刺激比传统的需要使用图形用户界面的BCI能实现更直接的指令。然而,绕过屏幕意味着对刺激外观的控制较少。在现实环境中,这会导致对不同物体产生异质的脑反应,给可靠的EEG分类带来挑战。我们将物体实例建模为子类,以便在黎曼切空间中训练专门的分类器,每个分类器通过合并来自其他物体的数据进行正则化。在总共19名健康参与者的多个实验中,我们表明我们的方法不仅提高了分类性能且对异质和同质物体都具有鲁棒性。虽然我们的方法在无屏幕BCI的情况下特别有用,但它也可以自然地应用于具有潜在子类结构的其他实验范式。