Suppr超能文献

一种用于将植物基因与特定代谢途径相连接的全球共表达网络方法。

A Global Coexpression Network Approach for Connecting Genes to Specialized Metabolic Pathways in Plants.

作者信息

Wisecaver Jennifer H, Borowsky Alexander T, Tzin Vered, Jander Georg, Kliebenstein Daniel J, Rokas Antonis

机构信息

Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235.

French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben Gurion University, Sede-Boqer Campus 84990, Israel.

出版信息

Plant Cell. 2017 May;29(5):944-959. doi: 10.1105/tpc.17.00009. Epub 2017 Apr 13.

Abstract

Plants produce diverse specialized metabolites (SMs), but the genes responsible for their production and regulation remain largely unknown, hindering efforts to tap plant pharmacopeia. Given that genes comprising SM pathways exhibit environmentally dependent coregulation, we hypothesized that genes within a SM pathway would form tight associations (modules) with each other in coexpression networks, facilitating their identification. To evaluate this hypothesis, we used 10 global coexpression data sets, each a meta-analysis of hundreds to thousands of experiments, across eight plant species to identify hundreds of coexpressed gene modules per data set. In support of our hypothesis, 15.3 to 52.6% of modules contained two or more known SM biosynthetic genes, and module genes were enriched in SM functions. Moreover, modules recovered many experimentally validated SM pathways, including all six known to form biosynthetic gene clusters (BGCs). In contrast, bioinformatically predicted BGCs (i.e., those lacking an associated metabolite) were no more coexpressed than the null distribution for neighboring genes. These results suggest that most predicted plant BGCs are not genuine SM pathways and argue that BGCs are not a hallmark of plant specialized metabolism. We submit that global gene coexpression is a rich, largely untapped resource for discovering the genetic basis and architecture of plant natural products.

摘要

植物产生多种特殊代谢产物(SMs),但其产生和调控所涉及的基因仍大多未知,这阻碍了挖掘植物药典的努力。鉴于构成SM途径的基因表现出环境依赖性的共调控,我们推测SM途径中的基因在共表达网络中会彼此形成紧密关联(模块),从而便于它们的识别。为了评估这一假设,我们使用了10个全局共表达数据集,每个数据集都是对数百至数千个实验的荟萃分析,涵盖8种植物,以在每个数据集中识别数百个共表达基因模块。支持我们的假设的是,15.3%至52.6%的模块包含两个或更多已知的SM生物合成基因,并且模块基因在SM功能方面富集。此外,模块恢复了许多经实验验证的SM途径,包括已知形成生物合成基因簇(BGCs)的所有六个途径。相比之下,生物信息学预测的BGCs(即那些缺乏相关代谢物的BGCs)的共表达程度并不高于相邻基因的零分布。这些结果表明,大多数预测的植物BGCs并非真正的SM途径,并表明BGCs并非植物特殊代谢的标志。我们认为,全局基因共表达是发现植物天然产物遗传基础和结构的丰富但基本未开发的资源。

相似文献

10
Differential metabolic and coexpression networks of plant metabolism.植物代谢的差异代谢和共表达网络。
Trends Plant Sci. 2015 May;20(5):266-268. doi: 10.1016/j.tplants.2015.02.002. Epub 2015 Mar 16.

引用本文的文献

4
Genome-wide terpene gene clusters analysis in Euphorbiaceae.大戟科全基因组萜类基因簇分析
Hortic Res. 2025 May 23;12(7):uhaf097. doi: 10.1093/hr/uhaf097. eCollection 2025 Jul.
9
Evolution of plant metabolism: the state-of-the-art.植物代谢的进化:现状。
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230347. doi: 10.1098/rstb.2023.0347. Epub 2024 Sep 30.

本文引用的文献

3
Utility and Limitations of Using Gene Expression Data to Identify Functional Associations.利用基因表达数据识别功能关联的效用与局限性
PLoS Comput Biol. 2016 Dec 9;12(12):e1005244. doi: 10.1371/journal.pcbi.1005244. eCollection 2016 Dec.
10
Plant metabolic clusters - from genetics to genomics.植物代谢簇——从遗传学到基因组学
New Phytol. 2016 Aug;211(3):771-89. doi: 10.1111/nph.13981. Epub 2016 Apr 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验