Nijssen Jik, Comley Laura H, Hedlund Eva
Department of Neuroscience, Karolinska Institutet, Retzius v. 8, 171 77, Stockholm, Sweden.
Acta Neuropathol. 2017 Jun;133(6):863-885. doi: 10.1007/s00401-017-1708-8. Epub 2017 Apr 13.
In the fatal disease-amyotrophic lateral sclerosis (ALS)-upper (corticospinal) motor neurons (MNs) and lower somatic MNs, which innervate voluntary muscles, degenerate. Importantly, certain lower MN subgroups are relatively resistant to degeneration, even though pathogenic proteins are typically ubiquitously expressed. Ocular MNs (OMNs), including the oculomotor, trochlear and abducens nuclei (CNIII, IV and VI), which regulate eye movement, persist throughout the disease. Consequently, eye-tracking devices are used to enable paralysed ALS patients (who can no longer speak) to communicate. Additionally, there is a gradient of vulnerability among spinal MNs. Those innervating fast-twitch muscle are most severely affected and degenerate first. MNs innervating slow-twitch muscle can compensate temporarily for the loss of their neighbours by re-innervating denervated muscle until later in disease these too degenerate. The resistant OMNs and the associated extraocular muscles (EOMs) are anatomically and functionally very different from other motor units. The EOMs have a unique set of myosin heavy chains, placing them outside the classical characterization spectrum of all skeletal muscle. Moreover, EOMs have multiple neuromuscular innervation sites per single myofibre. Spinal fast and slow motor units show differences in their dendritic arborisations and the number of myofibres they innervate. These motor units also differ in their functionality and excitability. Identifying the molecular basis of cell-intrinsic pathways that are differentially activated between resistant and vulnerable MNs could reveal mechanisms of selective neuronal resistance, degeneration and regeneration and lead to therapies preventing progressive MN loss in ALS. Illustrating this, overexpression of OMN-enriched genes in spinal MNs, as well as suppression of fast spinal MN-enriched genes can increase the lifespan of ALS mice. Here, we discuss the pattern of lower MN degeneration in ALS and review the current literature on OMN resistance in ALS and differential spinal MN vulnerability. We also reflect upon the non-cell autonomous components that are involved in lower MN degeneration in ALS.
在致命疾病——肌萎缩侧索硬化症(ALS)中,支配随意肌的上运动神经元(皮质脊髓运动神经元)和下运动神经元会发生退化。重要的是,某些下运动神经元亚群对退化具有相对抗性,尽管致病蛋白通常在全身广泛表达。包括动眼神经核、滑车神经核和展神经核(第三、第四和第六对脑神经)在内的眼运动神经元,它们负责调节眼球运动,在整个疾病过程中持续存在。因此,眼球追踪设备被用于帮助瘫痪的ALS患者(无法再说话)进行交流。此外,脊髓运动神经元存在易损性梯度。支配快肌纤维的运动神经元受影响最严重,最先退化。支配慢肌纤维的运动神经元可以通过重新支配失神经肌肉来暂时补偿其相邻神经元的损失,直到疾病后期这些神经元也发生退化。具有抗性的眼运动神经元和相关的眼外肌在解剖学和功能上与其他运动单位有很大不同。眼外肌有一组独特的肌球蛋白重链,使其超出了所有骨骼肌的经典特征范围。此外,每条单根肌纤维的眼外肌有多个神经肌肉支配位点。脊髓快运动单位和慢运动单位在树突分支以及它们所支配的肌纤维数量上存在差异。这些运动单位在功能和兴奋性方面也有所不同。确定抗性和易损性运动神经元之间差异激活的细胞内在通路的分子基础,可能揭示选择性神经元抗性、退化和再生的机制,并导致预防ALS中运动神经元进行性丧失的治疗方法。举例来说,在脊髓运动神经元中过表达富含眼运动神经元的基因,以及抑制富含脊髓快运动神经元的基因,可以延长ALS小鼠的寿命。在这里,我们讨论ALS中下运动神经元退化的模式,并综述当前关于ALS中眼运动神经元抗性和脊髓运动神经元易损性差异的文献。我们还思考了参与ALS中下运动神经元退化的非细胞自主成分。