Department of Nanophotonics and Metamaterials, ITMO University , St. Petersburg 197101, Russia.
Department of Physics and Mathematics, University of Eastern Finland , Yliopistokatu 7, 80101, Joensuu, Finland.
Nano Lett. 2017 May 10;17(5):2945-2952. doi: 10.1021/acs.nanolett.7b00183. Epub 2017 Apr 24.
We propose a novel photothermal approach based on resonant dielectric nanoparticles, which possess imaginary part of permittivity significantly smaller as compared to metal ones. We show both experimentally and theoretically that a spherical silicon nanoparticle with a magnetic quadrupolar Mie resonance converts light to heat up to 4 times more effectively than similar spherical gold nanoparticle at the same heating conditions. We observe photoinduced temperature raise up to 900 K with the silicon nanoparticle on a glass substrate at moderate intensities (<2 mW/μm) and typical laser wavelength (633 nm). The advantage of using crystalline silicon is the simplicity of local temperature control by means of Raman spectroscopy working in a broad range of temperatures, that is, up to the melting point of silicon (1690 K) with submicrometer spatial resolution. Our CMOS-compatible heater-thermometer nanoplatform paves the way to novel nonplasmonic photothermal applications, extending the temperature range and simplifying the thermoimaging procedure.
我们提出了一种基于共振介电纳米粒子的光热方法,与金属相比,这种纳米粒子具有明显更小的介电常数虚部。我们通过实验和理论都证明,在相同的加热条件下,具有磁四极 Mie 共振的球形硅纳米粒子将光转换为热的效率比类似的球形金纳米粒子高 4 倍。我们在玻璃衬底上观察到硅纳米粒子在中等强度(<2 mW/μm)和典型激光波长(633nm)下的光致温度升高高达 900K。使用结晶硅的优点在于通过拉曼光谱在很宽的温度范围内(即高达 1690K 的硅熔点)以亚微米空间分辨率进行局部温度控制的简单性。我们的 CMOS 兼容的加热器-温度计纳米平台为新型非等离子体光热应用铺平了道路,扩展了温度范围并简化了热成像过程。