Delaney Alexander R, Dahele Max, Tol Jim P, Kuijper Ingrid T, Slotman Ben J, Verbakel Wilko F A R
Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands.
Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands.
Radiother Oncol. 2017 Aug;124(2):263-270. doi: 10.1016/j.radonc.2017.03.020. Epub 2017 Apr 12.
Patient selection for proton therapy by comparing proton/photon treatment plans is time-consuming and prone to bias. RapidPlan™, a knowledge-based-planning solution, uses plan-libraries to model and predict organ-at-risk (OAR) dose-volume-histograms (DVHs). We investigated whether RapidPlan, utilizing an algorithm based only on photon beam characteristics, could generate proton DVH-predictions and whether these could correctly identify patients for proton therapy.
Model and Model comprised 30 head-and-neck cancer proton and photon plans, respectively. Proton and photon knowledge-based-plans (KBPs) were made for ten evaluation-patients. DVH-prediction accuracy was analyzed by comparing predicted-vs-achieved mean OAR doses. KBPs and manual plans were compared using salivary gland and swallowing muscle mean doses. For illustration, patients were selected for protons if predicted Model mean dose minus predicted Model mean dose (ΔPrediction) for combined OARs was ≥6Gy, and benchmarked using achieved KBP doses.
Achieved and predicted Model/Model mean dose R was 0.95/0.98. Generally, achieved mean dose for Model/Model KBPs was respectively lower/higher than predicted. Comparing Model/Model KBPs with manual plans, salivary and swallowing mean doses increased/decreased by <2Gy, on average. ΔPrediction≥6Gy correctly selected 4 of 5 patients for protons.
Knowledge-based DVH-predictions can provide efficient, patient-specific selection for protons. A proton-specific RapidPlan-solution could improve results.
通过比较质子/光子治疗计划来选择质子治疗的患者既耗时又容易产生偏差。RapidPlan™是一种基于知识的治疗计划解决方案,它使用计划库来模拟和预测危及器官(OAR)的剂量体积直方图(DVH)。我们研究了仅基于光子束特征的算法的RapidPlan是否能够生成质子DVH预测,以及这些预测是否能够正确识别适合质子治疗的患者。
模型和模型分别包含30个头颈癌质子和光子计划。为10名评估患者制定了基于质子和光子知识的计划(KBP)。通过比较预测的与实际的平均OAR剂量来分析DVH预测准确性。使用唾液腺和吞咽肌肉的平均剂量比较KBP和手动计划。为了说明,如果联合OARs的预测模型平均剂量减去预测模型平均剂量(Δ预测)≥6Gy,则选择患者进行质子治疗,并使用实际的KBP剂量进行基准测试。
实际和预测的模型/模型平均剂量R为0.95/0.98。一般来说,模型/模型KBP的实际平均剂量分别低于/高于预测值。将模型/模型KBP与手动计划进行比较,唾液和吞咽平均剂量平均增加/减少<2Gy。Δ预测≥6Gy正确地为5名患者中的4名选择了质子治疗。
基于知识的DVH预测可以为质子治疗提供高效的、针对患者的选择。特定于质子的RapidPlan解决方案可能会改善结果。