Suppr超能文献

在琥珀酸代谢方面存在缺陷的苜蓿根瘤菌突变体。

Mutants of Rhizobium meliloti defective in succinate metabolism.

作者信息

Finan T M, Oresnik I, Bottacin A

机构信息

Department of Biology, McMaster University, Hamilton, Ontario, Canada.

出版信息

J Bacteriol. 1988 Aug;170(8):3396-403. doi: 10.1128/jb.170.8.3396-3403.1988.

Abstract

We characterized mutants of Rhizobium meliloti SU47 that were unable to grow on succinate as the carbon source. The mutants fell into five groups based on complementation of the succinate mutations by individual recombinant plasmids isolated from a R. meliloti clone bank. Enzyme analysis showed that mutants in the following groups lacked the indicated common enzyme activities: group II, enolase (Eno); group III, phosphoenolpyruvate carboxykinase (Pck); group IV, glyceraldehyde-3-phosphate dehydrogenase (Gap), and 3-phosphoglycerate kinase (Pgk). Mutants in groups I and V lacked C4-dicarboxylate transport (Dct-) activity. Wild-type cells grown on succinate as the carbon source had high Pck activity, whereas no Pck activity was detected in cells that were grown on glucose as the carbon source. It was found that in free-living cells, Pck is required for the synthesis of phosphoenolpyruvate during gluconeogenesis. In addition, the enzymes of the lower half of the Embden-Meyerhoff-Parnas pathway were absolutely required for gluconeogenesis. Eno, Gap, Pck, and one of the Dct loci (ntrA) mapped to different regions of the chromosome; the other Dct locus was tightly linked to a previously mapped thi locus, which was located on the megaplasmid pRmeSU47b.

摘要

我们对不能以琥珀酸盐作为碳源生长的苜蓿中华根瘤菌SU47突变体进行了特性分析。根据从苜蓿中华根瘤菌克隆文库中分离得到的单个重组质粒对琥珀酸盐突变的互补作用,这些突变体分为五组。酶分析表明,以下几组突变体缺乏所指出的常见酶活性:第二组,烯醇化酶(Eno);第三组,磷酸烯醇式丙酮酸羧激酶(Pck);第四组,甘油醛-3-磷酸脱氢酶(Gap)和3-磷酸甘油酸激酶(Pgk)。第一组和第五组突变体缺乏C4-二羧酸转运(Dct-)活性。以琥珀酸盐作为碳源生长的野生型细胞具有较高的Pck活性,而以葡萄糖作为碳源生长的细胞中未检测到Pck活性。研究发现,在自由生活的细胞中,糖异生过程中磷酸烯醇式丙酮酸的合成需要Pck。此外,糖异生绝对需要糖酵解途径下半部分的酶。Eno、Gap、Pck和一个Dct位点(ntrA)定位于染色体的不同区域;另一个Dct位点与先前定位的硫位点紧密连锁,该硫位点位于大质粒pRmeSU47b上。

相似文献

1
Mutants of Rhizobium meliloti defective in succinate metabolism.
J Bacteriol. 1988 Aug;170(8):3396-403. doi: 10.1128/jb.170.8.3396-3403.1988.
2
Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti.
Mol Microbiol. 1989 Jun;3(6):813-23. doi: 10.1111/j.1365-2958.1989.tb00230.x.
4
Genetic map of Rhizobium meliloti megaplasmid pRmeSU47b.
J Bacteriol. 1990 May;172(5):2469-76. doi: 10.1128/jb.172.5.2469-2476.1990.
5
8
Genetic analysis of carbamoylphosphate synthesis in Rhizobium meliloti 104A14.
J Gen Microbiol. 1988 Apr;134(4):921-9. doi: 10.1099/00221287-134-4-921.
9
Genetic analysis of mutations affecting pckA regulation in Rhizobium (Sinorhizobium) meliloti.
Genetics. 1997 Dec;147(4):1521-31. doi: 10.1093/genetics/147.4.1521.
10
Molecular and expression analysis of the Rhizobium meliloti phosphoenolpyruvate carboxykinase (pckA) gene.
J Bacteriol. 1995 Mar;177(6):1452-60. doi: 10.1128/jb.177.6.1452-1460.1995.

引用本文的文献

2
Inability to Catabolize Rhamnose by Rm1021 Affects Competition for Nodule Occupancy.
Microorganisms. 2022 Mar 29;10(4):732. doi: 10.3390/microorganisms10040732.
3
Characterization of Mutations That Affect the Nonoxidative Pentose Phosphate Pathway in Sinorhizobium meliloti.
J Bacteriol. 2017 Dec 20;200(2). doi: 10.1128/JB.00436-17. Print 2018 Jan 15.
4
A Key Regulator of the Glycolytic and Gluconeogenic Central Metabolic Pathways in .
Genetics. 2017 Nov;207(3):961-974. doi: 10.1534/genetics.117.300212. Epub 2017 Aug 29.
5
The Use of Transposon Insertion Sequencing to Interrogate the Core Functional Genome of the Legume Symbiont .
Front Microbiol. 2016 Nov 22;7:1873. doi: 10.3389/fmicb.2016.01873. eCollection 2016.
7
Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes.
Appl Environ Microbiol. 2016 Jun 13;82(13):3698-3710. doi: 10.1128/AEM.01055-16. Print 2016 Jul 1.
8
Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome.
Mol Genet Genomics. 2015 Aug;290(4):1345-56. doi: 10.1007/s00438-015-0998-6. Epub 2015 Feb 1.
9
Examination of prokaryotic multipartite genome evolution through experimental genome reduction.
PLoS Genet. 2014 Oct 23;10(10):e1004742. doi: 10.1371/journal.pgen.1004742. eCollection 2014 Oct.
10
Molecular basis of the establishment and functioning of a N2-fixing root nodule.
World J Microbiol Biotechnol. 1994 Nov;10(6):612-30. doi: 10.1007/BF00327946.

本文引用的文献

1
Succinate transport in Rhizobium leguminosarum.
J Bacteriol. 1981 Oct;148(1):193-202. doi: 10.1128/jb.148.1.193-202.1981.
2
Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum.
J Bacteriol. 1983 Jun;154(3):1403-13. doi: 10.1128/jb.154.3.1403-1413.1983.
4
Alternative pathways of carbohydrate utilization in pseudomonads.
Annu Rev Microbiol. 1984;38:359-88. doi: 10.1146/annurev.mi.38.100184.002043.
5
General transduction in Rhizobium meliloti.
J Bacteriol. 1984 Jul;159(1):120-4. doi: 10.1128/jb.159.1.120-124.1984.
6
Generation of a Tn5 promoter probe and its use in the study of gene expression in Caulobacter crescentus.
Proc Natl Acad Sci U S A. 1984 Feb;81(4):1035-9. doi: 10.1073/pnas.81.4.1035.
8
Transport and catabolism of D-mannose in Rhizobium meliloti.
J Bacteriol. 1982 Sep;151(3):1069-72. doi: 10.1128/jb.151.3.1069-1072.1982.
10
Evaluation of active versus passive uptake of metabolites by Rhizobium japonicum bacteroids.
J Bacteriol. 1984 Jul;159(1):47-52. doi: 10.1128/jb.159.1.47-52.1984.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验