Streng Martha L, Popa Laurentiu S, Ebner Timothy J
Graduate Program in Neuroscience and.
Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455.
J Neurosci. 2017 Feb 22;37(8):1997-2009. doi: 10.1523/JNEUROSCI.3163-16.2017. Epub 2017 Jan 11.
A crucial issue in understanding cerebellar function is the interaction between simple spike (SS) and complex spike (CS) discharge, the two fundamentally different activity modalities of Purkinje cells. Although several hypotheses have provided insights into the interaction, none fully explains or is completely consistent with the spectrum of experimental observations. Here, we show that during a pseudo-random manual tracking task in the monkey (Macaca mulatta), climbing fiber discharge dynamically controls the information present in the SS firing, triggering robust and rapid changes in the SS encoding of motor signals in 67% of Purkinje cells. The changes in encoding, tightly coupled to CS occurrences, consist of either increases or decreases in the SS sensitivity to kinematics or position errors and are not due to differences in SS firing rates or variability. Nor are the changes in sensitivity due to CS rhythmicity. In addition, the CS-coupled changes in encoding are not evoked by changes in kinematics or position errors. Instead, CS discharge most often leads alterations in behavior. Increases in SS encoding of a kinematic parameter are associated with larger changes in that parameter than are decreases in SS encoding. Increases in SS encoding of position error are followed by and scale with decreases in error. The results suggest a novel function of CSs, in which climbing fiber input dynamically controls the state of Purkinje cell SS encoding in advance of changes in behavior. Purkinje cells, the sole output of the cerebellar cortex, manifest two fundamentally different activity modalities, complex spike (CS) discharge and simple spike (SS) firing. Elucidating cerebellar function will require an understanding of the interactions, both short- and long-term, between CS and SS firing. This study shows that CSs dynamically control the information encoded in a Purkinje cell's SS activity by rapidly increasing or decreasing the SS sensitivity to kinematics and/or performance errors independent of firing rate. In many cases, the CS-coupled shift in SS encoding leads a change in behavior. These novel findings on the interaction between CS and SS firing provide for a new hypothesis in which climbing fiber input adjusts the encoding of SS information in advance of a change in behavior.
理解小脑功能的一个关键问题是简单峰电位(SS)和复合峰电位(CS)放电之间的相互作用,这是浦肯野细胞两种根本不同的活动模式。尽管有几种假说对这种相互作用提供了见解,但没有一种能完全解释或与一系列实验观察结果完全一致。在这里,我们表明,在猴子(猕猴)的伪随机手动跟踪任务中,攀缘纤维放电动态控制着SS放电中存在的信息,在67%的浦肯野细胞中触发运动信号SS编码的强烈而快速的变化。与CS出现紧密耦合的编码变化包括SS对运动学或位置误差的敏感性增加或降低,这不是由于SS放电率或变异性的差异。敏感性的变化也不是由CS节律性引起的。此外,编码中与CS耦合的变化不是由运动学或位置误差的变化引起的。相反,CS放电最常导致行为改变。运动学参数的SS编码增加与该参数的较大变化相关,而SS编码减少则不然。位置误差的SS编码增加之后是误差的减少并与之成比例。结果表明CS具有一种新功能,即攀缘纤维输入在行为改变之前动态控制浦肯野细胞SS编码的状态。浦肯野细胞是小脑皮质的唯一输出,表现出两种根本不同的活动模式,复合峰电位(CS)放电和简单峰电位(SS)发放。阐明小脑功能需要了解CS和SS发放之间的短期和长期相互作用。这项研究表明,CS通过独立于放电率快速增加或降低SS对运动学和/或性能误差的敏感性,动态控制浦肯野细胞SS活动中编码的信息。在许多情况下,与CS耦合的SS编码变化会导致行为改变。这些关于CS和SS发放之间相互作用的新发现提出了一个新的假说,即攀缘纤维输入在行为改变之前调整SS信息的编码。