Segall K, LeGro M, Kaplan S, Svitelskiy O, Khadka S, Crotty P, Schult D
Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, New York 13346, USA.
Consultant, 1800 Cherokee Drive, Estes Park, Colorado 80517, USA.
Phys Rev E. 2017 Mar;95(3-1):032220. doi: 10.1103/PhysRevE.95.032220. Epub 2017 Mar 22.
Conventional digital computation is rapidly approaching physical limits for speed and energy dissipation. Here we fabricate and test a simple neuromorphic circuit that models neuronal somas, axons, and synapses with superconducting Josephson junctions. The circuit models two mutually coupled excitatory neurons. In some regions of parameter space the neurons are desynchronized. In others, the Josephson neurons synchronize in one of two states, in-phase or antiphase. An experimental alteration of the delay and strength of the connecting synapses can toggle the system back and forth in a phase-flip bifurcation. Firing synchronization states are calculated >70 000 times faster than conventional digital approaches. With their speed and low energy dissipation (10^{-17}J/spike), this set of proof-of-concept experiments establishes Josephson junction neurons as a viable approach for improvements in neuronal computation as well as applications in neuromorphic computing.
传统数字计算在速度和能量耗散方面正迅速接近物理极限。在此,我们制造并测试了一个简单的神经形态电路,该电路用超导约瑟夫森结来模拟神经元的胞体、轴突和突触。该电路模拟了两个相互耦合的兴奋性神经元。在参数空间的某些区域,神经元是不同步的。在其他区域,约瑟夫森神经元会以同相或反相这两种状态之一同步。连接突触的延迟和强度的实验性改变可在相位翻转分岔中使系统来回切换。激发同步状态的计算速度比传统数字方法快7万倍以上。凭借其速度和低能量耗散(每脉冲10⁻¹⁷焦耳),这组概念验证实验确立了约瑟夫森结神经元是改进神经元计算以及用于神经形态计算应用的一种可行方法。