Guo Qun, Zhou Ping, Zhang Xiaofeng, Zhu Zhigang
College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050 China.
School of Science, Chongqing University of Posts and Telecommunications, Chongqing, 430065 China.
Cogn Neurodyn. 2025 Dec;19(1):75. doi: 10.1007/s11571-025-10258-6. Epub 2025 May 19.
In this work, two capacitors connected by a thermistor are used to explore the electrical property of double-layer membrane in a neuron, which the membrane property is sensitive to changes of temperature and two capacitive variables are used to measure the potentials of inner and outer membrane. The circuit characteristics and energy definition for the neural circuit and its equivalent neuron model in oscillator form are clarified from physical aspect. Considering the shape deformation of cell membrane under external physical stimuli and energy injection, intrinsic parameters of the neuron can be controlled with adaptive growth under energy flow, an adaptive control law is proposed to regulate the firing modes accompanying with energy shift. In presence of noisy excitation, coherence resonance can be induced and confirmed by taming the noise intensity carefully. The distributions of (coefficient variability) and average energy value < > vs. noise intensity provide a feasible way to predict the coherence resonance and even stochastic resonance in the neural activities. Adaptive parameter observers are designed to identify the unknown parameters in this neuron model. The research findings of this study lay a foundation for the design of temperature-adaptive biomimetic neuromorphic devices and the research on multi-functional perception neural networks with temperature sensitivity.
在这项工作中,使用由热敏电阻连接的两个电容器来探究神经元中双层膜的电学性质,该膜性质对温度变化敏感,并且使用两个电容变量来测量内膜和外膜的电位。从物理角度阐明了振荡形式的神经回路及其等效神经元模型的电路特性和能量定义。考虑到细胞膜在外部物理刺激和能量注入下的形状变形,神经元的固有参数可以在能量流作用下通过自适应生长进行控制,提出了一种自适应控制律来调节伴随能量转移的放电模式。在存在噪声激励的情况下,通过仔细调节噪声强度可以诱导并确认相干共振。(系数变异性)和平均能量值<>与噪声强度的分布为预测神经活动中的相干共振甚至随机共振提供了一种可行的方法。设计了自适应参数观测器来识别该神经元模型中的未知参数。本研究的研究结果为温度自适应仿生神经形态器件的设计以及对具有温度敏感性的多功能感知神经网络的研究奠定了基础。