Schegolev Andrey E, Klenov Nikolay V, Bakurskiy Sergey V, Soloviev Igor I, Kupriyanov Mikhail Yu, Tereshonok Maxim V, Sidorenko Anatoli S
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
Moscow Technical University of Communication and Informatics (MTUCI), 111024 Moscow, Russia.
Beilstein J Nanotechnol. 2022 May 18;13:444-454. doi: 10.3762/bjnano.13.37. eCollection 2022.
The hardware implementation of signal microprocessors based on superconducting technologies seems relevant for a number of niche tasks where performance and energy efficiency are critically important. In this paper, we consider the basic elements for superconducting neural networks on radial basis functions. We examine the static and dynamic activation functions of the proposed neuron. Special attention is paid to tuning the activation functions to a Gaussian form with relatively large amplitude. For the practical implementation of the required tunability, we proposed and investigated heterostructures designed for the implementation of adjustable inductors that consist of superconducting, ferromagnetic, and normal layers.
基于超导技术的信号微处理器的硬件实现似乎适用于一些对性能和能源效率至关重要的特定任务。在本文中,我们考虑了基于径向基函数的超导神经网络的基本元件。我们研究了所提出神经元的静态和动态激活函数。特别关注将激活函数调整为具有相对较大幅度的高斯形式。为了实际实现所需的可调性,我们提出并研究了用于实现由超导、铁磁和正常层组成的可调电感器的异质结构。