Suppr超能文献

癌症干细胞中依赖RNA编辑的表观转录组多样性

RNA editing-dependent epitranscriptome diversity in cancer stem cells.

作者信息

Jiang Qingfei, Crews Leslie A, Holm Frida, Jamieson Catriona H M

机构信息

Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California 92093, USA.

出版信息

Nat Rev Cancer. 2017 Jun;17(6):381-392. doi: 10.1038/nrc.2017.23. Epub 2017 Apr 18.

Abstract

Cancer stem cells (CSCs) can regenerate all facets of a tumour as a result of their stem cell-like capacity to self-renew, survive and become dormant in protective microenvironments. CSCs evolve during tumour progression in a manner that conforms to Charles Darwin's principle of natural selection. Although somatic DNA mutations and epigenetic alterations promote evolution, post-transcriptional RNA modifications together with RNA binding protein activity (the 'epitranscriptome') might also contribute to clonal evolution through dynamic determination of RNA function and gene expression diversity in response to environmental stimuli. Deregulation of these epitranscriptomic events contributes to CSC generation and maintenance, which governs cancer progression and drug resistance. In this Review, we discuss the role of malignant RNA processing in CSC generation and maintenance, including mechanisms of RNA methylation, RNA editing and RNA splicing, and the functional consequences of their aberrant regulation in human malignancies. Finally, we highlight the potential of these events as novel CSC biomarkers as well as therapeutic targets.

摘要

癌症干细胞(CSCs)由于其具有类似干细胞的自我更新、存活以及在保护性微环境中进入休眠状态的能力,能够再生肿瘤的各个方面。癌症干细胞在肿瘤进展过程中的演变方式符合查尔斯·达尔文的自然选择原则。虽然体细胞DNA突变和表观遗传改变促进了进化,但转录后RNA修饰以及RNA结合蛋白活性(“表观转录组”)也可能通过动态决定RNA功能和基因表达多样性以响应环境刺激,从而对克隆进化有所贡献。这些表观转录组事件的失调会导致癌症干细胞的产生和维持,进而控制癌症进展和耐药性。在本综述中,我们讨论了恶性RNA加工在癌症干细胞产生和维持中的作用,包括RNA甲基化、RNA编辑和RNA剪接的机制,以及它们在人类恶性肿瘤中异常调控的功能后果。最后,我们强调了这些事件作为新型癌症干细胞生物标志物以及治疗靶点的潜力。

相似文献

1
RNA editing-dependent epitranscriptome diversity in cancer stem cells.
Nat Rev Cancer. 2017 Jun;17(6):381-392. doi: 10.1038/nrc.2017.23. Epub 2017 Apr 18.
2
Deciphering the Epitranscriptome in Cancer.
Trends Cancer. 2018 Mar;4(3):207-221. doi: 10.1016/j.trecan.2018.01.006. Epub 2018 Feb 21.
3
RNA Modifications in Cancer Stem Cell Biology.
Cancer Treat Res. 2023;190:25-47. doi: 10.1007/978-3-031-45654-1_2.
4
An RNA editing fingerprint of cancer stem cell reprogramming.
J Transl Med. 2015 Feb 12;13:52. doi: 10.1186/s12967-014-0370-3.
5
RNA Editing in Pathogenesis of Cancer.
Cancer Res. 2017 Jul 15;77(14):3733-3739. doi: 10.1158/0008-5472.CAN-17-0520. Epub 2017 Jun 30.
6
Cancer stem cells: understanding tumor hierarchy and heterogeneity.
Medicine (Baltimore). 2016 Sep;95(1 Suppl 1):S2-S7. doi: 10.1097/MD.0000000000004764.
7
On the epigenetic origin of cancer stem cells.
Biochim Biophys Acta. 2012 Aug;1826(1):83-8. doi: 10.1016/j.bbcan.2012.03.009. Epub 2012 Apr 1.
8
Die hard: are cancer stem cells the Bruce Willises of tumor biology?
Cytometry A. 2009 Jan;75(1):67-74. doi: 10.1002/cyto.a.20690.
9
Epigenetic alterations involved in cancer stem cell reprogramming.
Mol Oncol. 2012 Dec;6(6):620-36. doi: 10.1016/j.molonc.2012.10.006. Epub 2012 Oct 26.
10
Recurrence cancer stem cells--made by cell fusion?
Med Hypotheses. 2009 Oct;73(4):542-7. doi: 10.1016/j.mehy.2009.05.044. Epub 2009 Jun 28.

引用本文的文献

1
Deciphering the mechanistic roles of ADARs in cancer pathogenesis, tumor immune evasion, and drug resistance.
Front Immunol. 2025 Aug 7;16:1621585. doi: 10.3389/fimmu.2025.1621585. eCollection 2025.
4
Rewriting cellular fate: epigenetic interventions in obesity and cellular programming.
Mol Med. 2024 Oct 10;30(1):169. doi: 10.1186/s10020-024-00944-2.
5
REMR: Identification of RNA Editing-mediated MiRNA Regulation in Cancers.
Comput Struct Biotechnol J. 2024 Sep 18;23:3418-3429. doi: 10.1016/j.csbj.2024.09.011. eCollection 2024 Dec.
6
Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues.
Cell. 2024 Nov 14;187(23):6760-6779.e24. doi: 10.1016/j.cell.2024.09.001. Epub 2024 Sep 30.
7
RNA editing regulates host immune response and T cell homeostasis in SARS-CoV-2 infection.
PLoS One. 2024 Aug 23;19(8):e0307450. doi: 10.1371/journal.pone.0307450. eCollection 2024.

本文引用的文献

1
FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N-Methyladenosine RNA Demethylase.
Cancer Cell. 2017 Jan 9;31(1):127-141. doi: 10.1016/j.ccell.2016.11.017. Epub 2016 Dec 22.
2
RNA Splicing Modulation Selectively Impairs Leukemia Stem Cell Maintenance in Secondary Human AML.
Cell Stem Cell. 2016 Nov 3;19(5):599-612. doi: 10.1016/j.stem.2016.08.003. Epub 2016 Aug 25.
3
ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis.
Cell Stem Cell. 2016 Aug 4;19(2):177-191. doi: 10.1016/j.stem.2016.05.004. Epub 2016 Jun 9.
4
RNA splicing factors as oncoproteins and tumour suppressors.
Nat Rev Cancer. 2016 Jul;16(7):413-30. doi: 10.1038/nrc.2016.51. Epub 2016 Jun 10.
5
Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma.
Nature. 2016 Jun 16;534(7607):407-411. doi: 10.1038/nature17988. Epub 2016 Jun 6.
8
The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells.
Mol Cell. 2016 May 5;62(3):335-345. doi: 10.1016/j.molcel.2016.03.021. Epub 2016 Apr 21.
9
Adenosine to Inosine editing frequency controlled by splicing efficiency.
Nucleic Acids Res. 2016 Jul 27;44(13):6398-408. doi: 10.1093/nar/gkw325. Epub 2016 Apr 25.
10
Unraveling molecular effects of ADAR1 overexpression in HEK293T cells by label-free quantitative proteomics.
Cell Cycle. 2016 Jun 17;15(12):1591-601. doi: 10.1080/15384101.2016.1176657. Epub 2016 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验