Suppr超能文献

基于高效模式识别控制策略的假肢手体域网控制器。

A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.

机构信息

Micrel Lab, Unversity of Bologna, 40126 Bologna, Italy.

E3DA, Fondazione Bruno Kessler, 38123 Trento, Italy.

出版信息

Sensors (Basel). 2017 Apr 15;17(4):869. doi: 10.3390/s17040869.

Abstract

Poliarticulated prosthetic hands represent a powerful tool to restore functionality and improve quality of life for upper limb amputees. Such devices offer, on the same wearable node, sensing and actuation capabilities, which are not equally supported by natural interaction and control strategies. The control in state-of-the-art solutions is still performed mainly through complex encoding of gestures in bursts of contractions of the residual forearm muscles, resulting in a non-intuitive Human-Machine Interface (HMI). Recent research efforts explore the use of myoelectric gesture recognition for innovative interaction solutions, however there persists a considerable gap between research evaluation and implementation into successful complete systems. In this paper, we present the design of a wearable prosthetic hand controller, based on intuitive gesture recognition and a custom control strategy. The wearable node directly actuates a poliarticulated hand and wirelessly interacts with a personal gateway (i.e., a smartphone) for the training and personalization of the recognition algorithm. Through the whole system development, we address the challenge of integrating an efficient embedded gesture classifier with a control strategy tailored for an intuitive interaction between the user and the prosthesis. We demonstrate that this combined approach outperforms systems based on mere pattern recognition, since they target the accuracy of a classification algorithm rather than the control of a gesture. The system was fully implemented, tested on healthy and amputee subjects and compared against benchmark repositories. The proposed approach achieves an error rate of 1.6% in the end-to-end real time control of commonly used hand gestures, while complying with the power and performance budget of a low-cost microcontroller.

摘要

多关节假肢手代表了一种强大的工具,可以恢复上肢截肢者的功能并提高生活质量。这些设备在同一个可穿戴节点上提供了传感和驱动能力,而这在自然交互和控制策略中并不完全支持。在最先进的解决方案中,控制仍然主要通过对手臂残余肌肉的收缩进行复杂的手势编码来完成,导致人机界面(HMI)不直观。最近的研究努力探索了使用肌电手势识别来实现创新的交互解决方案,但是研究评估和成功完整系统的实施之间仍然存在相当大的差距。在本文中,我们提出了一种基于直观手势识别和自定义控制策略的可穿戴假肢手控制器的设计。可穿戴节点直接驱动多关节手,并通过个人网关(即智能手机)进行无线交互,以对手势识别算法进行训练和个性化。通过整个系统的开发,我们解决了将高效的嵌入式手势分类器与针对用户与假肢之间直观交互的控制策略集成的挑战。我们证明了这种组合方法优于仅仅基于模式识别的系统,因为它们的目标是分类算法的准确性,而不是手势的控制。该系统已全面实现,在健康和截肢受试者上进行了测试,并与基准库进行了比较。该方法在常用手势的端到端实时控制中达到了 1.6%的错误率,同时符合低成本微控制器的功率和性能预算。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/779c/5424746/cf0a01e10d41/sensors-17-00869-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验